update:2014-2-27 LinJM @HQU 『 libsvm专栏地址:http://blog.csdn.net/column/details/libsvm.html 』
这一篇博文来分析下Kernel类,代码上很简单,一般都能看懂。Kernel类主要是为SVM的核函数服务的,里面实现了SVM常用的核函数,通过函数指针来使用这些核函数。
其中几个常用核函数如下所示:(一般情况下,使用RBF核函数能取得很好的效果)
关于基类QMatrix在Kernel中的作用并不明显,只是定义了一些纯虚函数,Kernel继承这些函数,Kernel只对swap_index进行了定义。其余的get_Q和get_QD在Kernel并没有用到。
class QMatrix { public: virtual Qfloat *get_Q(int column, int len) const = 0;//纯虚函数,在子类中实现,important! virtual double *get_QD() const = 0; virtual void swap_index(int i, int j) const = 0; virtual ~QMatrix() {} };
Kernel类的定义函数,比较简单就不细说。
class Kernel: public QMatrix { public: Kernel(int l, svm_node * const * x, const svm_parameter& param); virtual ~Kernel(); static double k_function(const svm_node *x, const svm_node *y, const svm_parameter& param); virtual Qfloat *get_Q(int column, int len) const = 0; virtual double *get_QD() const = 0; virtual void swap_index(int i, int j) const // no so const... { swap(x[i],x[j]); if(x_square) swap(x_square[i],x_square[j]); } protected: double (Kernel::*kernel_function)(int i, int j) const; private: const svm_node **x;//用来指向样本数据,每次数据传入时通过克隆函数来实现,完全重新分配内存,主要是为处理多类着想 double *x_square;//使用RBF 核才使用 // svm_parameter const int kernel_type; const int degree; const double gamma; const double coef0; static double dot(const svm_node *px, const svm_node *py); double kernel_linear(int i, int j) const { return dot(x[i],x[j]); } double kernel_poly(int i, int j) const { return powi(gamma*dot(x[i],x[j])+coef0,degree); } double kernel_rbf(int i, int j) const { return exp(-gamma*(x_square[i]+x_square[j]-2*dot(x[i],x[j]))); } double kernel_sigmoid(int i, int j) const { return tanh(gamma*dot(x[i],x[j])+coef0); } double kernel_precomputed(int i, int j) const { return x[i][(int)(x[j][0].value)].value; } };
全部代码如下:
// // Kernel evaluation // // the static method k_function is for doing single kernel evaluation // the constructor of Kernel prepares to calculate the l*l kernel matrix // the member function get_Q is for getting one column from the Q Matrix // class QMatrix { public: virtual Qfloat *get_Q(int column, int len) const = 0; virtual double *get_QD() const = 0; virtual void swap_index(int i, int j) const = 0; virtual ~QMatrix() {} }; class Kernel: public QMatrix { public: Kernel(int l, svm_node * const * x, const svm_parameter& param);//构造函数 virtual ~Kernel(); static double k_function(const svm_node *x, const svm_node *y, const svm_parameter& param); virtual Qfloat *get_Q(int column, int len) const = 0; virtual double *get_QD() const = 0; virtual void swap_index(int i, int j) const // no so const... { swap(x[i],x[j]); if(x_square) swap(x_square[i],x_square[j]); } protected: double (Kernel::*kernel_function)(int i, int j) const; private: const svm_node **x;//用来指向样本数据,每次数据传入时通过克隆函数来实现,完全重新分配内存,主要是为处理多类着想 double *x_square;//使用RBF 核才使用 // svm_parameter const int kernel_type; const int degree; const double gamma; const double coef0; static double dot(const svm_node *px, const svm_node *py); double kernel_linear(int i, int j) const { return dot(x[i],x[j]); } double kernel_poly(int i, int j) const { return powi(gamma*dot(x[i],x[j])+coef0,degree); } double kernel_rbf(int i, int j) const { return exp(-gamma*(x_square[i]+x_square[j]-2*dot(x[i],x[j]))); } double kernel_sigmoid(int i, int j) const { return tanh(gamma*dot(x[i],x[j])+coef0); } double kernel_precomputed(int i, int j) const { return x[i][(int)(x[j][0].value)].value; } }; //构造函数,初始化类中的部分常量,指定核函数,克隆样本数据。如果使用RBF核函数,则计算x_square[i] Kernel::Kernel(int l, svm_node * const * x_, const svm_parameter& param) :kernel_type(param.kernel_type), degree(param.degree), gamma(param.gamma), coef0(param.coef0) { switch(kernel_type) { case LINEAR: kernel_function = &Kernel::kernel_linear; break; case POLY: kernel_function = &Kernel::kernel_poly; break; case RBF: kernel_function = &Kernel::kernel_rbf; break; case SIGMOID: kernel_function = &Kernel::kernel_sigmoid; break; case PRECOMPUTED: kernel_function = &Kernel::kernel_precomputed; break; } clone(x,x_,l);//void clone(T*& dst, S* src, int n) if(kernel_type == RBF) { x_square = new double[l]; for(int i=0;i<l;i++) x_square[i] = dot(x[i],x[i]); } else x_square = 0; } Kernel::~Kernel() { delete[] x; delete[] x_square; } double Kernel::dot(const svm_node *px, const svm_node *py) { double sum = 0; while(px->index != -1 && py->index != -1) { if(px->index == py->index) { sum += px->value * py->value; ++px; ++py; } else { if(px->index > py->index) ++py; else ++px; } } return sum; } double Kernel::k_function(const svm_node *x, const svm_node *y, const svm_parameter& param) { switch(param.kernel_type) { case LINEAR: return dot(x,y); case POLY: return powi(param.gamma*dot(x,y)+param.coef0,param.degree); case RBF: { double sum = 0; while(x->index != -1 && y->index !=-1) { if(x->index == y->index) { double d = x->value - y->value; sum += d*d; ++x; ++y; } else { if(x->index > y->index) { sum += y->value * y->value; ++y; } else { sum += x->value * x->value; ++x; } } } while(x->index != -1) { sum += x->value * x->value; ++x; } while(y->index != -1) { sum += y->value * y->value; ++y; } return exp(-param.gamma*sum); } case SIGMOID: return tanh(param.gamma*dot(x,y)+param.coef0); case PRECOMPUTED: //x: test (validation), y: SV return x[(int)(y->value)].value; default: return 0; // Unreachable } }
本文地址:http://blog.csdn.net/linj_m/article/details/19574623
微博:林建民-机器视觉