转自: http://blog.csdn.net/windskier/article/details/7041610
前一篇文章介绍了android的显示系统,这篇文章中,我们把视角往上层移动一下,研究一下framework是如何与surfaceflinger进行业务交互的。
1)如何创建surface
2)如何显示窗口等等
所有的这一切都是通过系统服务WindowManagerService与surfaceflinger来进行的。
Android中的Surface机制这一块代码写的比较难理解,光叫Surface的类就有3个,因此本篇文章从两部分来分析。
首先,想要理解Surface机制,还是需要首先理清各个类之间的关系。
其次,在理解了整个Surface机制的类关系之后,到时我们再结合前一篇文章中对显示系统的介绍,研究一下一个Surface是如何和显示系统建立起联系来的,这个联系主要是指Surface的显示buffer的存储管理。
在下篇文章中,再分析SurfaceFlinger是如何将已经存储了窗口图形数据的Surface Buffer显示到显示系统中。
将这一部分叫做Surface机制,是有别于SurfaceFlinger而言的,android的图形系统中,作为C/S模型两端的WMS和SurfaceFlinger是图形系统业务的核心,但是不把WMS和SurfaceFlinger中间的这层联系搞清楚的话,是很难理解整个图形系统的,在本文中我将两者之间的这个联系关系称之为Surface机制,它的主要任务就是创建一个Surface,ViewRoot在这个Surface上描绘当前的窗口,SurfaceFlinger将这个Surface flinger(扔)给显示系统将其呈现在硬件设备上。其实这里这个Surface在不同的模块中是以不同的形态存在的,唯一不变的就是其对应的显示Buffer。
我们知道每个Activity都会有一个ViewRootImpl作为Activity Window与WMS交互的接口,ViewRootImpl会绘制整个Activity的窗口View到Surface上,因此我们在ViewRootImpl中就有了创建Surface的需求。看一下代码中的Surface的定义:
ViewRootImpl.java
// These can be accessed by any thread, must be protected with a lock. // Surface can never be reassigned or cleared (use Surface.clear()). private final Surface mSurface = new Surface();
Surface(SurfaceTexture surfaceTexture)@Surface.java
/** * Create Surface from a {@link SurfaceTexture}. * * Images drawn to the Surface will be made available to the {@link * SurfaceTexture}, which can attach them an OpenGL ES texture via {@link * SurfaceTexture#updateTexImage}. * * @param surfaceTexture The {@link SurfaceTexture} that is updated by this * Surface. */ public Surface(SurfaceTexture surfaceTexture) { if (DEBUG_RELEASE) { mCreationStack = new Exception(); } mCanvas = new CompatibleCanvas(); initFromSurfaceTexture(surfaceTexture); }
由上面可以看出在ViewRootImpl中定义的Surface只是一个空壳,那么真正的Surface是在哪里被初始化的呢?大管家WMS中!当ViewRootImpl请求WMS relayout时,会将ViewSurface中的Surface交给WMS初始化。在WMS中,对应每个WindowState对象,在relayout窗口时,同样会创建一个Surface,wms中的这个Surface会真正的初始化,然后再将这个WMS Surface复制给ViewRootImpl中的Surface。这么实现的目的就是保证ViewRootImpl和WMS共享同一个Surface。ViewRootImpl对Surface进行绘制,WMS对这个Surface进行初始化及管理。很和谐!
private int relayoutWindow(WindowManager.LayoutParams params, int viewVisibility, boolean insetsPending) throws RemoteException { ... int relayoutResult = sWindowSession.relayout( mWindow, mSeq, params, (int) (mView.getMeasuredWidth() * appScale + 0.5f), (int) (mView.getMeasuredHeight() * appScale + 0.5f), viewVisibility, insetsPending, mWinFrame, mPendingContentInsets, mPendingVisibleInsets, mPendingConfiguration, mSurface); //Log.d(TAG, "<<<<<< BACK FROM relayout"); if (restore) { params.restore(); } if (mTranslator != null) { mTranslator.translateRectInScreenToAppWinFrame(mWinFrame); mTranslator.translateRectInScreenToAppWindow(mPendingContentInsets); mTranslator.translateRectInScreenToAppWindow(mPendingVisibleInsets); } return relayoutResult; }
relayoutWindow()@WindowManagerService.java
public int relayoutWindow(Session session, IWindow client, int seq, WindowManager.LayoutParams attrs, int requestedWidth, int requestedHeight, int viewVisibility, boolean insetsPending, Rect outFrame, Rect outContentInsets, Rect outVisibleInsets, Configuration outConfig, Surface outSurface) { boolean displayed = false; boolean inTouchMode; boolean configChanged; // if they don't have this permission, mask out the status bar bits synchronized(mWindowMap) { WindowState win = windowForClientLocked(session, client, false); if (viewVisibility == View.VISIBLE && (win.mAppToken == null || !win.mAppToken.clientHidden)) { displayed = !win.isVisibleLw(); ... try { Surface surface = win.createSurfaceLocked(); if (surface != null) { outSurface.copyFrom(surface); win.mReportDestroySurface = false; win.mSurfacePendingDestroy = false; if (SHOW_TRANSACTIONS) Slog.i(TAG, " OUT SURFACE " + outSurface + ": copied"); } else { // For some reason there isn't a surface. Clear the // caller's object so they see the same state. outSurface.release(); } } catch (Exception e) { mInputMonitor.updateInputWindowsLw(true /*force*/); Slog.w(TAG, "Exception thrown when creating surface for client " + client + " (" + win.mAttrs.getTitle() + ")", e); Binder.restoreCallingIdentity(origId); return 0; } ... } }
SurfaceSession可以认为是创建Surface过程中,WMS和SurfaceFlinger之间的会话层,通过这个SurfaceSession实现了Surface的创建。
一个SurfaceSession表示一个到SurfaceFlinger的连接,通过它可以创建一个或多个Surface实例。
SurfaceSession是JAVA层的概念,@SurfaceSession.java。它对应的native实体是一个SurfaceComposerClient对象。
SurfaceComposerClient通过ComposerService类来获得SurfaceFlinger的IBinder接口ISurfaceComposer,但是光获得SurfaceFlinger的IBinder接口是不够的,要想请求SurfaceFlinger创建一个Surface,还需要向SurfaceFlinger获得一个IBinder接口ISurfaceComposerClient,通过这个ISurfaceComposerClient来请求SurfaceFlinger创建一个Surface,为什么这么绕呢,为什么不直接让SurfaceFlinger创建Surface呢?
站在SurfaceFlinger的角度来考虑,对于SurfaceFlinger来说,可能有多个Client来请求SurfaceFlinger的业务,每个Client可能会请求SurfaceFlinger创建多个Surface,那么SurfaceFlinger本地需要提供一套机制来保存每个client请求创建的Surface,SurfaceFlinger通过为每个client创建一个Client对象实现这个机制,并将这个Client的IBinder接口ISurfaceComposerClient返给SurfaceComposerClient对象。SurfaceComposerClient对象在通过ISurfaceComposerClient去请求创建Surface(ISurfaceComposerClient的功能只有创建和销毁Surface)。
@SurfaceFlinger.h
class Client : public BnSurfaceComposerClient class SurfaceFlinger : public BinderService<SurfaceFlinger>, public BnSurfaceComposer, public IBinder::DeathRecipient, protected Thread
@SurfaceComposerClient.cpp
void SurfaceComposerClient::onFirstRef() { sp<ISurfaceComposer> sm(getComposerService()); if (sm != 0) { sp<ISurfaceComposerClient> conn = sm->createConnection(); if (conn != 0) { mClient = conn; mStatus = NO_ERROR; } } }
在SurfaceFlinger中对应的执行代码为:
sp<ISurfaceComposerClient> SurfaceFlinger::createConnection() { sp<ISurfaceComposerClient> bclient; sp<Client> client(new Client(this)); status_t err = client->initCheck(); if (err == NO_ERROR) { bclient = client; } return bclient; }
下图描述了整个SurfaceSession的内部结构与工作流程。
蓝色箭头是SurfaceComposerClient通过ComposerService获得SurfaceFlinger的IBinder接口ISurfaceComposer过程;
红色箭头表示SurfaceComposerClient通过IPC请求SurfaceFlinger创建Client的过程,并获得Client的IBinder接口ISurfaceComposerClient;
绿色箭头表示SurfaceComposerClient通过IPC请求Client创建Surface。
上一节我们分析了SurfaceSession的静态结构,得知Surface的创建过程是通过SurfaceSession这个中间会话层去请求SurfaceFlinger去创建的,并且这篇文章中,我们说了半天Surface了,那么究竟我们要创建的Surface究竟是什么样的一个东西呢,它的具体形态是什么呢?这一小节我们就来分析以下Surface的形态。
首先,我们看一下Surface在WMS中定义的代码
createSurfaceLocked()@WindowState.java
Surface createSurfaceLocked() { if (mSurface == null) { ... try { final boolean isHwAccelerated = (mAttrs.flags & WindowManager.LayoutParams.FLAG_HARDWARE_ACCELERATED) != 0; final int format = isHwAccelerated ? PixelFormat.TRANSLUCENT : mAttrs.format; if (!PixelFormat.formatHasAlpha(mAttrs.format)) { flags |= Surface.OPAQUE; } mSurface = new Surface( mSession.mSurfaceSession, mSession.mPid, mAttrs.getTitle().toString(), 0, w, h, format, flags); if (SHOW_TRANSACTIONS || SHOW_SURFACE_ALLOC) Slog.i(WindowManagerService.TAG, " CREATE SURFACE " + mSurface + " IN SESSION " + mSession.mSurfaceSession + ": pid=" + mSession.mPid + " format=" + mAttrs.format + " flags=0x" + Integer.toHexString(flags) + " / " + this); } ... } return mSurface; }
我们可以看到,它将SurfaceSession对象当作参数传递给了Surface的构造函数。往下看Surface的构造函数。
@Surface.java
/** create a surface with a name @hide */ public Surface(SurfaceSession s, int pid, String name, int display, int w, int h, int format, int flags) throws OutOfResourcesException { if (DEBUG_RELEASE) { mCreationStack = new Exception(); } mCanvas = new CompatibleCanvas(); init(s,pid,name,display,w,h,format,flags); mName = name; }
这个构造函数,不同于我们在ViewRootImpl中看到的Surface的构造函数,这个构造函数并不是一个空壳,它做了本地实体的初始化工作,因此这个Surface才是一个真正的Suface。
Native函数init(Surface_init@android_view_Surface.cpp)会调到SurfaceComposerClient::createSurface,再向下的过程在上一节的图中描述很清楚了,在此不作介绍了。同时,先不管SurfaceFlinger为SurfaceComposerClient创建的Surface到底是一个什么东西,我们先看看SurfaceComposerClient为WMS创建的是一个什么东西?
@SurfaceComposerClient.cpp
sp<SurfaceControl> SurfaceComposerClient::createSurface( const String8& name, DisplayID display, uint32_t w, uint32_t h, PixelFormat format, uint32_t flags) { sp<SurfaceControl> result; if (mStatus == NO_ERROR) { ISurfaceComposerClient::surface_data_t data; sp<ISurface> surface = mClient->createSurface(&data, name, //mClient为BpSurfaceComposerClient display, w, h, format, flags); if (surface != 0) { result = new SurfaceControl(this, surface, data); } } return result; }
从上面的代码我们可以看出,SurfaceComposerClient为WMS返回的是一个SurfaceControl对象,这个SurfaceControl对象包含了surfaceFlinger为SurfaceComposerClient创建的surface,这个surfaceFlinge创建的Surface在Client端的形态为ISurface。这个过程下面分析SurfaceFlinger端的Surface形态时会看到。
SurfaceControl类中还有一个非常重要的成员mSurfaceData<class Surface : public SurfaceTextureClient>,它的类型也叫做Surface,定义在frameworks/base/include/surfaceflinger/surface.h。这个Surface提供了显示Buffer的管理。在文章的后面再介绍。
@frameworks/base/libs/gui/Surface.cpp
sp<Surface> SurfaceControl::getSurface() const { Mutex::Autolock _l(mLock); if (mSurfaceData == 0) { sp<SurfaceControl> surface_control(const_cast<SurfaceControl*>(this)); mSurfaceData = new Surface(surface_control); } return mSurfaceData; }
sp<ISurface> SurfaceFlinger::createSurface( ISurfaceComposerClient::surface_data_t* params, const String8& name, const sp<Client>& client, DisplayID d, uint32_t w, uint32_t h, PixelFormat format, uint32_t flags) { sp<LayerBaseClient> layer; sp<ISurface> surfaceHandle; if (int32_t(w|h) < 0) { LOGE("createSurface() failed, w or h is negative (w=%d, h=%d)", int(w), int(h)); return surfaceHandle; } //LOGD("createSurface for pid %d (%d x %d)", pid, w, h); sp<Layer> normalLayer; switch (flags & eFXSurfaceMask) { case eFXSurfaceNormal: normalLayer = createNormalSurface(client, d, w, h, flags, format); layer = normalLayer; break; case eFXSurfaceBlur: // for now we treat Blur as Dim, until we can implement it // efficiently. case eFXSurfaceDim: layer = createDimSurface(client, d, w, h, flags); break; case eFXSurfaceScreenshot: layer = createScreenshotSurface(client, d, w, h, flags); break; } if (layer != 0) { layer->initStates(w, h, flags); layer->setName(name); ssize_t token = addClientLayer(client, layer); surfaceHandle = layer->getSurface(); if (surfaceHandle != 0) { params->token = token; params->identity = layer->getIdentity(); if (normalLayer != 0) { Mutex::Autolock _l(mStateLock); mLayerMap.add(layer->getSurfaceBinder(), normalLayer); } } setTransactionFlags(eTransactionNeeded); } return surfaceHandle; }
当client请求SurfaceFlinger创建Surface时,SurfaceFlinger首先根据WMS提供的窗口的属性来一个命名为Layer概念的对象,然后再根据Layer创建它的子类对象LayerBaseClient::BSurface。此时第三个名为Surface(BSurface)类出现了,下一节我们来介绍一下这个Layer的概念。
1.4 Layer
目前,android4.0中有3中Layer类型,如上图所示。
1. Layer, 普通的Layer,它为每个Client端请求的Surface创建显示Buffer。
2. LayerDim,这种Layer不会创建显示Buffer,它只是将通过这个Layer将原来FrameBuffer上的数据进行暗淡处理;
3. LayerScreenshot,这种Layer不会创建显示Buffer,它只是将通过这个Layer将原来FrameBuffer上的数据进行抓取;
从这些Layer看出,我们分析的重点就是第一种Layer,下面我们着重分析一下普通的Layer。Layer的具体业务我们在下一篇文章中分析
上文我们在分析SurfaceSession的时候,也分析过,一个Client可能会创建多个Surface,也就是要创建多个Layer,那么SurfaceFlinger端如何管理多个Layer呢?SurfaceFlinger维护了3个Vector来管理Layer<Client: DefaultKeyedVector< size_t, wp<LayerBaseClient> > mLayers;SurfaceFlinger:LayerVector layersSortedByZ;>。
第一种方式,我们知道SurfaceFlinger会为每个SurfaceSession创建一个Client对象,这第一种方式就是将所有为某一个SurfacSession创建的Layer保存在它对应的Client对象中。
SurfaceFlinger::createSurface()@SurfaceFlinger.cpp,调用路径如下:
SurfaceFlinger::addClientLayer->
client->attachLayer(lbc)->
mLayers.add(name, layer);
第二种方式,在SurfaceFlinger中以排序的方式保存下来。其调用路径如下:
SurfaceFlinger::addClientLayer->
SurfaceFlinger::addLayer_l->
mCurrentState.layersSortedByZ.add(layer)
第三种方式,将所有的创建的普通的Layer保存起来,以便Client Surface在请求实现Buffer时能够辨识Client Surface对应的Layer。
SurfaceFlinger::createSurface()@SurfaceFlinger.cpp
surfaceHandle = layer->getSurface(); if (surfaceHandle != 0) { params->token = token; params->identity = layer->getIdentity(); if (normalLayer != 0) { Mutex::Autolock _l(mStateLock); mLayerMap.add(layer->getSurfaceBinder(), normalLayer); } }
在前文介绍Client端的Surface形态的内容时,我们提到SurfaceControl中还会维护一个名为Surface对象,它定义在 frameworks/base/libs/surfaceflinger/Surface.h中,它负责向LayerBaseClient::BSurface请求显示Buffer,同时将显示Buffer交给JAVA Surface的Canvas去绘制窗口,我们称这个Surface为Client Surface。
draw()@ViewRoot.java
Canvas canvas; try { int left = dirty.left; int top = dirty.top; int right = dirty.right; int bottom = dirty.bottom; final long lockCanvasStartTime; if (ViewDebug.DEBUG_LATENCY) { lockCanvasStartTime = System.nanoTime(); } canvas = surface.lockCanvas(dirty); if (ViewDebug.DEBUG_LATENCY) { long now = System.nanoTime(); Log.d(TAG, "Latency: Spent " + ((now - lockCanvasStartTime) * 0.000001f) + "ms waiting for surface.lockCanvas()"); } if (left != dirty.left || top != dirty.top || right != dirty.right || bottom != dirty.bottom) { mAttachInfo.mIgnoreDirtyState = true; } // TODO: Do this in native canvas.setDensity(mDensity);
上面的代码显示,JAVA Surface 会lock canvas。而Client Surface的创建就在这个过程中,即下面代码中的第一行getSurface().我们先不管Client Surface的创建,先看看Canvas是如何与Client Surface的显示Buffer关联的。
Surface_lockCanvas@android_view_Surface.cpp
static jobject Surface_lockCanvas(JNIEnv* env, jobject clazz, jobject dirtyRect) { const sp<Surface>& surface(getSurface(env, clazz)); if (!Surface::isValid(surface)) { doThrowIAE(env); return 0; } // get dirty region Region dirtyRegion; if (dirtyRect) { Rect dirty; dirty.left = env->GetIntField(dirtyRect, ro.l); dirty.top = env->GetIntField(dirtyRect, ro.t); dirty.right = env->GetIntField(dirtyRect, ro.r); dirty.bottom= env->GetIntField(dirtyRect, ro.b); if (!dirty.isEmpty()) { dirtyRegion.set(dirty); } } else { dirtyRegion.set(Rect(0x3FFF,0x3FFF)); } Surface::SurfaceInfo info; status_t err = surface->lock(&info, &dirtyRegion); if (err < 0) { const char* const exception = (err == NO_MEMORY) ? OutOfResourcesException : "java/lang/IllegalArgumentException"; jniThrowException(env, exception, NULL); return 0; } // Associate a SkCanvas object to this surface jobject canvas = env->GetObjectField(clazz, so.canvas); env->SetIntField(canvas, co.surfaceFormat, info.format); SkCanvas* nativeCanvas = (SkCanvas*)env->GetIntField(canvas, no.native_canvas); SkBitmap bitmap; ssize_t bpr = info.s * bytesPerPixel(info.format); bitmap.setConfig(convertPixelFormat(info.format), info.w, info.h, bpr); if (info.format == PIXEL_FORMAT_RGBX_8888) { bitmap.setIsOpaque(true); } if (info.w > 0 && info.h > 0) { bitmap.setPixels(info.bits); } else { // be safe with an empty bitmap. bitmap.setPixels(NULL); } nativeCanvas->setBitmapDevice(bitmap); SkRegion clipReg; if (dirtyRegion.isRect()) { // very common case const Rect b(dirtyRegion.getBounds()); clipReg.setRect(b.left, b.top, b.right, b.bottom); } else { size_t count; Rect const* r = dirtyRegion.getArray(&count); while (count) { clipReg.op(r->left, r->top, r->right, r->bottom, SkRegion::kUnion_Op); r++, count--; } } nativeCanvas->clipRegion(clipReg); int saveCount = nativeCanvas->save(); env->SetIntField(clazz, so.saveCount, saveCount); if (dirtyRect) { const Rect& bounds(dirtyRegion.getBounds()); env->SetIntField(dirtyRect, ro.l, bounds.left); env->SetIntField(dirtyRect, ro.t, bounds.top); env->SetIntField(dirtyRect, ro.r, bounds.right); env->SetIntField(dirtyRect, ro.b, bounds.bottom); } return canvas; }
上面的代码,我们可以看出,Canvas的Bitmap设备设置了Client Surface的显示Buffer为其Bitmap pixel存储空间。
bitmap.setPixels(info.bits);
这样Canvas的绘制空间就有了。下一步就该绘制窗口了。
draw()@ViewRootImpl.java
try { canvas.translate(0, -yoff); if (mTranslator != null) { mTranslator.translateCanvas(canvas); } canvas.setScreenDensity(scalingRequired ? DisplayMetrics.DENSITY_DEVICE : 0); mAttachInfo.mSetIgnoreDirtyState = false; mView.draw(canvas); }
其中ViewRootImpl中的mView为整个窗口的View。它将Render自己和所有它的子View。
Client Surface的创建是从ViewRootImpl首次Lock canvas时进行的,这么做的目的可能也是为了节约空间,减少不必要的开支。
Client Surface的初始化和显示Buffer的管理过程比较复杂,下图给出了这一部分的一个静态结构图,有些东西从图上表现不出来,下面我简单的介绍一下。