Shark集群搭建配置

一、Shark简介

Shark是基于Spark与Hive之上的一种SQL查询引擎,官网的架构图及性能测试图如下:(Ps:本人也做了一个性能测试见Shark性能测试报告)

Shark集群搭建配置_第1张图片

我们涉及到了2个依赖组件,1是Apache Spark, 另外一个是AMPLAB的Hive0.11.

这里注意版本的选择,一定要选择官方的推荐版本:

Spark0.91 + AMPLAB Hive0.11 + Shark0.91

一定要自己编译好它们,适用于自己的集群。


二、Shark集群搭建

1. 搭建Spark集群,这个可以参照:Spark集群搭建。

2. 编译AMPLAB的Hive0.11, 进入到根目录下直接 ant package.

3.编译Shark,这个步骤和编译Spark是一样的,和HDFS的版本记得兼容就行,修改project下面的SharkBuild.scala里面的Hadoop版本号,然后sbt/sbt assembly.


三、启动Spark + Shark

首先,启动Spark,这里要修改spark的配置文件,在Spark-env.sh里面配置:

HADOOP_CONF_DIR=/home/hadoop/src/hadoop/conf
SPARK_CLASSPATH=/home/hadoop/src/hadoop/lib/:/app/hadoop/shengli/sharklib/*
SPARK_LOCAL_DIRS=/app/hadoop/shengli/spark/data
SPARK_MASTER_IP=10.1.8.210
SPARK_MASTER_WEBUI_PORT=7078

接着,配置Spark的spark-defaults.conf

spark.master            spark://10.1.8.210:7077
spark.executor.memory   32g
spark.shuffle.spill  true
java.library.path    /usr/local/lib
spark.shuffle.consolidateFiles true


# spark.eventLog.enabled  true
# spark.eventLog.dir      hdfs://namenode:8021/directory
# spark.serializer        org.apache.spark.serializer.KryoSerializer


接着配置slaves:

10.1.8.210  #这里master节点不会做cache
10.1.8.211
10.1.8.212
10.1.8.213

最后启动集群,sbin/start-all.sh,至此Spark集群配置完毕。

Shark有依赖的Jar包,我们集中将其拷贝到一个文件夹内:

#!/bin/bash
for jar in `find /home/hadoop/shengli/shark/lib -name '*jar'`; do
      cp $jar /home/hadoop/shengli/sharklib/
done
for jar in `find /home/hadoop/shengli/shark/lib_managed/jars -name '*jar'`; do
      cp $jar /home/hadoop/shengli/sharklib/
done
for jar in `find /home/hadoop/shengli/shark/lib_managed/bundles -name '*jar'`; do
  cp $jar /home/hadoop/shengli/sharklib/
done

配置Shark,在shark/conf/shark-env.sh中配置

# format as the JVM's -Xmx option, e.g. 300m or 1g.
export JAVA_HOME=/usr/java/jdk1.7.0_25
# (Required) Set the master program's memory
#export SHARK_MASTER_MEM=1g

# (Optional) Specify the location of Hive's configuration directory. By default,
# Shark run scripts will point it to $SHARK_HOME/conf
#export HIVE_CONF_DIR=""
export HADOOP_HOME=/home/hadoop/src/hadoop
# For running Shark in distributed mode, set the following:
export SHARK_MASTER_MEM=1g
export HADOOP_HOME=$HADOOP_HOME
export SPARK_HOME=/app/hadoop/shengli/spark
export SPARK_MASTER_IP=10.1.8.210
export MASTER=spark://10.1.8.210:7077

# Only required if using Mesos:
#export MESOS_NATIVE_LIBRARY=/usr/local/lib/libmesos.so

# Only required if run shark with spark on yarn
#export SHARK_EXEC_MODE=yarn
#export SPARK_ASSEMBLY_JAR=
#export SHARK_ASSEMBLY_JAR=

# (Optional) Extra classpath
#export SPARK_LIBRARY_PATH=""

# Java options
# On EC2, change the local.dir to /mnt/tmp


# (Optional) Tachyon Related Configuration
#export TACHYON_MASTER=""                     # e.g. "localhost:19998"
#export TACHYON_WAREHOUSE_PATH=/sharktables   # Could be any valid path name
#export HIVE_HOME=/home/hadoop/shengli/hive/build/dest
export HIVE_CONF_DIR=/app/hadoop/shengli/hive/conf
export CLASSPATH=$CLASSPATH:/home/hadoop/src/hadoop/lib:home/hadoop/src/hadoop/lib/native:/app/hadoop/shengli/sharklib/*

export SCALA_HOME=/app/hadoop/shengli/scala-2.10.3

#export SPARK_LIBRARY_PATH=/home/hadoop/src/hadoop/lib/native/Linux-amd64-64

#export LD_LIBRARY_PATH=/home/hadoop/src/hadoop/lib/native/Linux-amd64-64

#spark conf copy here


SPARK_JAVA_OPTS=" -Dspark.cores.max=8 -Dspark.local.dir=/app/hadoop/shengli/spark/data -Dspark.deploy.defaultCores=2 -Dspark.executor.memory=24g -Dspark.shuffle.spill=true -Djava.library.path=/usr/local/lib "
SPARK_JAVA_OPTS+="-Xmx4g -Xms4g -verbose:gc -XX:-PrintGCDetails -XX:+PrintGCTimeStamps -XX:+UseCompressedOops "
export SPARK_JAVA_OPTS


接下来配置Shark的集群了,我们要将编译好的Spark,Shark,Hive全部都分发到各个节点,保持同步更新rsync。

rsync --update -pav --progress /app/hadoop/shengli/spark/ [email protected]:/app/hadoop/shengli/spark/
......
rsync --update -pav --progress /app/hadoop/shengli/shark/ [email protected]:/app/hadoop/shengli/shark/
......
rsync --update -pav --progress /app/hadoop/shengli/hive/ [email protected]:/app/hadoop/shengli/hive/
......
rsync --update -pav --progress /app/hadoop/shengli/sharklib/ [email protected]:/app/hadoop/shengli/sharklib/
......
rsync --update -pav --progress /usr/java/jdk1.7.0_25/ [email protected]:/usr/java/jdk1.7.0_25/
......

启动Shark,可以在WEBUI上查看集群状态(上面配置的是WEB UI PORT 7078)

进入到SHARK_HOME/bin

drwxr-xr-x  4 hadoop games 4.0K Jun 12 10:01 .
drwxr-xr-x 13 hadoop games 4.0K Jun 16 16:59 ..
-rwxr-xr-x  1 hadoop games  882 Apr 10 19:18 beeline
drwxr-xr-x  2 hadoop games 4.0K Jun 12 10:01 dev
drwxr-xr-x  2 hadoop games 4.0K Jun 12 10:01 ext
-rwxr-xr-x  1 hadoop games 1.4K Apr 10 19:18 shark
-rwxr-xr-x  1 hadoop games  730 Apr 10 19:18 shark-shell
-rwxr-xr-x  1 hadoop games  840 Apr 10 19:18 shark-withdebug
-rwxr-xr-x  1 hadoop games  838 Apr 10 19:18 shark-withinfo


Shark集群搭建配置_第2张图片


这里shark是直接运行shark

shark-shell类似spark-shell

shark-withdebug是在运行中以DEBUG的log4J模式进入,适合排查错误和理解运行。

shark-withinfo同上。


shark还提供了一种shark-server共享Application中Cacahed RDD概念。

bin/shark -h 10.1.8.210 -p 7100
-h 10.1.8.210 -p 7100
Starting the Shark Command Line Client

Logging initialized using configuration in jar:file:/app/hadoop/shengli/sharklib/hive-common-0.11.0-shark-0.9.1.jar!/hive-log4j.properties
Hive history file=/tmp/root/hive_job_log_root_25876@wh-8-210_201406171640_1172020906.txt
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/app/hadoop/shengli/sharklib/slf4j-log4j12-1.7.2.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/app/hadoop/shengli/sharklib/shark-assembly-0.9.1-hadoop0.20.2-cdh3u5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/app/hadoop/shengli/shark/lib_managed/jars/org.slf4j/slf4j-log4j12/slf4j-log4j12-1.7.2.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
2.870: [GC 262208K->21869K(1004928K), 0.0274310 secs]
[10.1.8.210:7100] shark>

这样就可以用多个client连接这个端口了。

bin/shark -h 10.1.8.210 -p 7100
-h 10.1.8.210 -p 7100
Starting the Shark Command Line Client

Logging initialized using configuration in jar:file:/app/hadoop/shengli/sharklib/hive-common-0.11.0-shark-0.9.1.jar!/hive-log4j.properties
Hive history file=/tmp/hadoop/hive_job_log_hadoop_28486@wh-8-210_201406171719_457245737.txt
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/app/hadoop/shengli/sharklib/slf4j-log4j12-1.7.2.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/app/hadoop/shengli/sharklib/shark-assembly-0.9.1-hadoop0.20.2-cdh3u5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/app/hadoop/shengli/shark/lib_managed/jars/org.slf4j/slf4j-log4j12/slf4j-log4j12-1.7.2.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
show ta3.050: [GC 262208K->22324K(1004928K), 0.0240010 secs]
ble[10.1.8.210:7100] shark> show tables;
Time taken (including network latency): 0.072 seconds

至此,shark启动完毕。


3、测试

来做一个简单的测试,看是否可用,处理一个21g的文件。

[hadoop@wh-8-210 shark]$ hadoop dfs -ls /user/hive/warehouse/log/
Found 1 items
-rw-r--r--   3 hadoop supergroup 22499035249 2014-06-16 18:32 /user/hive/warehouse/log/21gfile

create table log 
(
  c1 string,
  c2 string,
  c3 string,
  c4 string,
  c5 string,
  c6 string,
  c7 string,
  c8 string,
  c9 string,
  c10 string,
  c11 string,
  c12 string,
  c13 string
) row format delimited fields terminated by '\t' stored as textfile; 

load data inpath '/user/hive/warehouse/log/21gfile' into table log;

count一下log表:

[10.1.8.210:7100] shark> select count(1) from log > ;
171802086
Time taken (including network latency): 33.753 seconds
用时33秒。


将log表全部装在至内存,count一下log_cached:

CREATE TABLE log_cached TBLPROPERTIES ("shark.cache" = "true") AS SELECT * from log;
Time taken (including network latency): 481.96 seconds
shark> select count(1) from log_cached;
171802086
Time taken (including network latency): 6.051 seconds

用时6秒,速度提升了至少5倍。

Shark集群搭建配置_第3张图片


查看Executor以及Task存储状况:

Shark集群搭建配置_第4张图片

查看存储状况Storage:

Shark集群搭建配置_第5张图片


至此,Shark集群搭建和简单的测试已完成。

后续我会写篇环境搭建中常见的问题,以及更详细的Shark测试结论。


注: 原创文章,转载请注明出处,出自:http://blog.csdn.net/oopsoom/article/details/30513929

-EOF-

你可能感兴趣的:(hadoop,spark,shark)