在OpenCV中用canny算子进行边缘检测速度很快,不过有点不爽的就是高低阈值需要输入。在OpenCV中自适应确定canny算法的分割门限 一文仿照matlab中的做法,对canny函数进行了修改,以便当用户没有指定高低阈值时,由函数自适应确定阈值。代码如下:
// 仿照matlab,自适应求高低两个门限 CV_IMPL void AdaptiveFindThreshold(CvMat *dx, CvMat *dy, double *low, double *high) { CvSize size; IplImage *imge=0; int i,j; CvHistogram *hist; int hist_size = 255; float range_0[]={0,256}; float* ranges[] = { range_0 }; double PercentOfPixelsNotEdges = 0.7; size = cvGetSize(dx); imge = cvCreateImage(size, IPL_DEPTH_32F, 1); // 计算边缘的强度, 并存于图像中 float maxv = 0; for(i = 0; i < size.height; i++ ) { const short* _dx = (short*)(dx->data.ptr + dx->step*i); const short* _dy = (short*)(dy->data.ptr + dy->step*i); float* _image = (float *)(imge->imageData + imge->widthStep*i); for(j = 0; j < size.width; j++) { _image[j] = (float)(abs(_dx[j]) + abs(_dy[j])); maxv = maxv < _image[j] ? _image[j]: maxv; } } // 计算直方图 range_0[1] = maxv; hist_size = (int)(hist_size > maxv ? maxv:hist_size); hist = cvCreateHist(1, &hist_size, CV_HIST_ARRAY, ranges, 1); cvCalcHist( &imge, hist, 0, NULL ); int total = (int)(size.height * size.width * PercentOfPixelsNotEdges); float sum=0; int icount = hist->mat.dim[0].size; float *h = (float*)cvPtr1D( hist->bins, 0 ); for(i = 0; i < icount; i++) { sum += h[i]; if( sum > total ) break; } // 计算高低门限 *high = (i+1) * maxv / hist_size ; *low = *high * 0.4; cvReleaseImage( &imge ); cvReleaseHist(&hist); }
// 自适应确定阈值 if(low_thresh == -1 && high_thresh == -1) { AdaptiveFindThreshold(dx, dy, &low_thresh, &high_thresh); }
但是上述代码存在一个问题,当图片是全黑的图时,maxv计算的结果为0,在调用cvCanny检测时,会造成段错误。另外,为了免去修改源码以及重新编译cv库,修改代码如下:
void AdaptiveFindThreshold(const CvArr* image, double *low, double *high, int aperture_size=3) { cv::Mat src = cv::cvarrToMat(image); const int cn = src.channels(); cv::Mat dx(src.rows, src.cols, CV_16SC(cn)); cv::Mat dy(src.rows, src.cols, CV_16SC(cn)); cv::Sobel(src, dx, CV_16S, 1, 0, aperture_size, 1, 0, cv::BORDER_REPLIC); cv::Sobel(src, dy, CV_16S, 0, 1, aperture_size, 1, 0, cv::BORDER_REPLIC); CvMat _dx = dx, _dy = dy; _AdaptiveFindThreshold(&_dx, &_dy, low, high); } // 仿照matlab,自适应求高低两个门限 void _AdaptiveFindThreshold(CvMat *dx, CvMat *dy, double *low, double *high) { CvSize size; IplImage *imge=0; int i,j; CvHistogram *hist; int hist_size = 255; float range_0[]={0,256}; float* ranges[] = { range_0 }; double PercentOfPixelsNotEdges = 0.7; size = cvGetSize(dx); imge = cvCreateImage(size, IPL_DEPTH_32F, 1); // 计算边缘的强度, 并存于图像中 float maxv = 0; for(i = 0; i < size.height; i++ ) { const short* _dx = (short*)(dx->data.ptr + dx->step*i); const short* _dy = (short*)(dy->data.ptr + dy->step*i); float* _image = (float *)(imge->imageData + imge->widthStep*i); for(j = 0; j < size.width; j++) { _image[j] = (float)(abs(_dx[j]) + abs(_dy[j])); maxv = maxv < _image[j] ? _image[j]: maxv; } } if(maxv == 0){ *high = 0; *low = 0; cvReleaseImage( &imge ); return; } // 计算直方图 range_0[1] = maxv; hist_size = (int)(hist_size > maxv ? maxv:hist_size); hist = cvCreateHist(1, &hist_size, CV_HIST_ARRAY, ranges, 1); cvCalcHist( &imge, hist, 0, NULL ); int total = (int)(size.height * size.width * PercentOfPixelsNotEdges); float sum=0; int icount = hist->mat.dim[0].size; float *h = (float*)cvPtr1D( hist->bins, 0 ); for(i = 0; i < icount; i++) { sum += h[i]; if( sum > total ) break; } // 计算高低门限 *high = (i+1) * maxv / hist_size ; *low = *high * 0.4; cvReleaseImage( &imge ); cvReleaseHist(&hist); }
这样在使用canny算子检测边缘时,需要两步调用:
IplImage *out = cvCloneImage(src); double low = 0.0, high = 0.0; AdaptiveFindThreshold(src, &low, &high); cvCanny(src, out, low, high);