1, Lucene的结构框架:
注意:Lucene中的一些比较复杂的词法分析是用JavaCC生成的(JavaCC:JavaCompilerCompiler,纯Java的词法 分析生成器),所以如果从源代码编译或需要修改其中的QueryParser、定制自己的词法分析器,还需要从 https://javacc.dev.java.net/下载javacc。
lucene的组成结构:对于外部应用来说索引模块(index)和检索模块(search)是主要的外部应用入口。 org.apache.Lucene.search/ 搜索入口
org.apache.Lucene.index/ 索引入口
org.apache.Lucene.analysis/ 语言分析器
org.apache.Lucene.queryParser/ 查询分析器
org.apache.Lucene.document/ 存储结构
org.apache.Lucene.store/ 底层IO/存储结构
org.apache.Lucene.util/ 一些公用的数据结构
2, 关于计划于词库的分词和一元分词,二元分词的区别. noise.chs 是词库中作为stopword而存在的.请大家注意.
下面做了详细描述:
2006年01月22日 星期日 于 2:39 am · 发表在: 默认
Lucene应用越来越多,在对中文对索引过程中,中文分词问题也就越来越重要。
在已有的分词模式中,目前比较常用的也是比较通用的有一元分词、二元分词和基于词库的分词三种。一元分词在Java版本上由yysun实现,并且已经收录 到Apache。其实现方式比较简单,即将每一个汉字作为一个Token,例如:“这是中文字”,在经过一元分词模式分词后的结果为五个Token:这、 是、中、文、字。而二元分词,则将两个相连的汉字作为一个Token划分,例如:“这是中文字”,运用二元分词模式分词后,得到的结果为:这是、是中、中 文、文字。
一元分词和二元分词实现原理比较简单,基本支持所有东方语言。但二者的缺陷也比较明显。一元分词单纯的考虑了中文的文字而没有考虑到中文的词性,例如在上 述的例子中,“中文”、“文字”这两个十分明显的中文词语就没有被识别出来。相反,二元分词则分出了太多的冗余的中文词,如上所述,“这是”、“是中”毫 无意义的文字组合竟被划分为一个词语,而同样的缺陷,命中的词语也不十分准确,如上:在“这是中文字”中,“中文字”这个词语应该优先考虑的。而二元分词 也未能实现。
基于词库的分词实现难度比较大,其模式也有多种,如微软在自己的软件中的汉语分词、海量的中文分词研究版,还有目前在.Net下实现的使用率较高的猎兔, 和一些其他人自发实现的分词工具等等。其都有自己的分析体系,虽然分析精度高,但实现难度大,实现周期长,而且,对一般的中小型应用系统来讲,在精度的要 求不是十分苛刻的环境下,这种模式对系统对消耗是一种奢侈行为。
在综合考虑一元分词、二元分词及基于词库的分词模式后,我大胆提出一种基于StopWord分割的分词模式。这种分词模式的设计思想是,针对要分割的段 落,先由标点分割成标准的短句。然后根据设定的StopWord,将短句由StopWord最大化分割,分割为一个个词语。如:输入短句为“这是中文字 ”,设定的StopWord列表为:“这”、“是”,则最终的结果为:“中文字”。
这个例子相对比较简单,举个稍微长一点的例子:输入短句“中文软件需要具有对中文文本的输入、显示、编辑、输出等基本功能”,设定的StopWord列表为:“这”、“是”、“的”、“对”、“等”、“需要”、“具有”,则分割出对结果列表为:
====================
中文软件
中文文本
输入
显示
编辑
输出
基本功能
====================
基本实现了想要的结果,但其中也不乏不足之处,如上述的结果中“中文软件”与“中文文本”应该分割为三个独立词“中文”、“软件”和“文本”,而不是上述的结果。
并且,对StopWord列表对设置,也是相对比较复杂的环节,没有一个确定的约束来设定StopWord。我的想法是,可以将一些无意义的主语,如“我 ”、“你”、“他”、“我们”、“他们”等,动词“是”、“对”、“有”等等其他各种词性诸如“的”、“啊”、“一”、“不”、“在”、“人”等等 (System32目录下noise.chs文件里的内容可以作为参考)作为StopWord。
noise.chs 是词库中作为stopword而存在的.请大家注意.
3, 关于分词的.还可以关注这个帖子:
http://lucene-group.group.javaeye.com/group/blog/58701
自己写的一个基于词库的lucene分词程序--ThesaurusAnalyzer
我已经测试过.还可以.18万分词.
4, lucene的自带分词的测试如下:\
Lucene本身提供了几个分词接口,我后来有给写了一个分词接口.
功能递增如下:
WhitespaceAnalyzer:仅仅是去除空格,对字符没有lowcase化,不支持中文
SimpleAnalyzer:功能强于WhitespaceAnalyzer,将除去letter之外的符号全部过滤掉,并且将所有的字符lowcase化,不支持中文
StopAnalyzer:StopAnalyzer的功能超越了SimpleAnalyzer,在SimpleAnalyzer的基础上
增加了去除StopWords的功能,不支持中文
StandardAnalyzer:英文的处理能力同于StopAnalyzer.支持中文采用的方法为单字切分.
ChineseAnalyzer:来自于Lucene的sand box.性能类似于StandardAnalyzer,缺点是不支持中英文混和分词.
CJKAnalyzer:chedong写的CJKAnalyzer的功能在英文处理上的功能和StandardAnalyzer相同
但是在汉语的分词上,不能过滤掉标点符号,即使用二元切分
TjuChineseAnalyzer:我写的,功能最为强大.TjuChineseAnlyzer的功能相当强大,在中文分词方面由于其调用的为 ICTCLAS的java接口.所以其在中文方面性能上同与ICTCLAS.其在英文分词上采用了Lucene的StopAnalyzer,可以去除 stopWords,而且可以不区分大小写,过滤掉各类标点符号.
程序调试于:JBuilder 2005
package org.apache.lucene.analysis;
//Author:zhangbufeng
//TjuAILab(天津大学人工智能实验室)
//2005.9.22.11:00
import java.io.*;
import junit.framework.*;
import org.apache.lucene.*;
import org.apache.lucene.analysis.*;
import org.apache.lucene.analysis.StopAnalyzer;
import org.apache.lucene.analysis.standard.*;
import org.apache.lucene.analysis.cn.*;
import org.apache.lucene.analysis.cjk.*;
import org.apache.lucene.analysis.tjucn.*;
import com.xjt.nlp.word.*;
public class TestAnalyzers extends TestCase {
public TestAnalyzers(String name) {
super(name);
}
public void assertAnalyzesTo(Analyzer a,
String input,
String[] output) throws Exception {
//前面的"dummy"好像没有用到
TokenStream ts = a.tokenStream("dummy", new StringReader(input));
StringReader readerInput=new StringReader(input);
for (int i=0; i Token t = ts.next();
//System.out.println(t);
assertNotNull(t);
//使用下面这条语句即可以输出Token的每项的text,并且用空格分开
System.out.print(t.termText);
System.out.print(" ");
assertEquals(t.termText(), output );
}
System.out.println(" ");
assertNull(ts.next());
ts.close();
}
public void outputAnalyzer(Analyzer a ,String input) throws Exception{
TokenStream ts = a.tokenStream("dummy",new StringReader(input));
StringReader readerInput = new StringReader(input);
while(true){
Token t = ts.next();
if(t!=null){
System.out.print(t.termText);
System.out.print(" ");
}
else
break;
}
System.out.println(" ");
ts.close();
}
public void testSimpleAnalyzer() throws Exception {
//学习使用SimpleAnalyzer();
//SimpleAnalyzer将除去letter之外的符号全部过滤掉,并且将所有的字符lowcase化
Analyzer a = new SimpleAnalyzer();
assertAnalyzesTo(a, "foo bar FOO BAR",
new String[] { "foo", "bar", "foo", "bar" });
assertAnalyzesTo(a, "foo bar . FOO <> BAR",
new String[] { "foo", "bar", "foo", "bar" });
assertAnalyzesTo(a, "foo.bar.FOO.BAR",
new String[] { "foo", "bar", "foo", "bar" });
assertAnalyzesTo(a, "U.S.A.",
new String[] { "u", "s", "a" });
assertAnalyzesTo(a, "C++",
new String[] { "c" });
assertAnalyzesTo(a, "B2B",
new String[] { "b", "b" });
assertAnalyzesTo(a, "2B",
new String[] { "b" });
assertAnalyzesTo(a, "\"QUOTED\" word",
new String[] { "quoted", "word" });
assertAnalyzesTo(a,"zhang ./ bu <> feng",
new String[]{"zhang","bu","feng"});
ICTCLAS splitWord = new ICTCLAS();
String result = splitWord.paragraphProcess("我爱大家 i LOVE chanchan");
assertAnalyzesTo(a,result,
new String[]{"我","爱","大家","i","love","chanchan"});
}
public void testWhiteSpaceAnalyzer() throws Exception {
//WhiterspaceAnalyzer仅仅是去除空格,对字符没有lowcase化
Analyzer a = new WhitespaceAnalyzer();
assertAnalyzesTo(a, "foo bar FOO BAR",
new String[] { "foo", "bar", "FOO", "BAR" });
assertAnalyzesTo(a, "foo bar . FOO <> BAR",
new String[] { "foo", "bar", ".", "FOO", "<>", "BAR" });
assertAnalyzesTo(a, "foo.bar.FOO.BAR",
new String[] { "foo.bar.FOO.BAR" });
assertAnalyzesTo(a, "U.S.A.",
new String[] { "U.S.A." });
assertAnalyzesTo(a, "C++",
new String[] { "C++" });
assertAnalyzesTo(a, "B2B",
new String[] { "B2B" });
assertAnalyzesTo(a, "2B",
new String[] { "2B" });
assertAnalyzesTo(a, "\"QUOTED\" word",
new String[] { "\"QUOTED\"", "word" });
assertAnalyzesTo(a,"zhang bu feng",
new String []{"zhang","bu","feng"});
ICTCLAS splitWord = new ICTCLAS();
String result = splitWord.paragraphProcess("我爱大家 i love chanchan");
assertAnalyzesTo(a,result,
new String[]{"我","爱"," 大家 ","i","love","chanchan"});
}
public void testStopAnalyzer() throws Exception {
//StopAnalyzer的功能超越了SimpleAnalyzer,在SimpleAnalyzer的基础上
//增加了去除StopWords的功能
Analyzer a = new StopAnalyzer();
assertAnalyzesTo(a, "foo bar FOO BAR",
new String[] { "foo", "bar", "foo", "bar" });
assertAnalyzesTo(a, "foo a bar such FOO THESE BAR",
new String[] { "foo", "bar", "foo", "bar" });
assertAnalyzesTo(a,"foo ./ a bar such ,./<> FOO THESE BAR ",
new String[]{"foo","bar","foo","bar"});
ICTCLAS splitWord = new ICTCLAS();
String result = splitWord.paragraphProcess("我爱 大家 i Love chanchan such");
assertAnalyzesTo(a,result,
new String[]{"我","爱"," 大家 ","i","love","chanchan"});
}
public void testStandardAnalyzer() throws Exception{
//StandardAnalyzer的功能最为强大,对于中文采用的为单字切分
Analyzer a = new StandardAnalyzer();
assertAnalyzesTo(a,"foo bar Foo Bar",
new String[]{"foo","bar","foo","bar"});
assertAnalyzesTo(a,"foo bar ./ Foo ./ BAR",
new String[]{"foo","bar","foo","bar"});
assertAnalyzesTo(a,"foo ./ a bar such ,./<> FOO THESE BAR ",
new String[]{"foo","bar","foo","bar"});
assertAnalyzesTo(a,"张步峰是天大学生",
new String[]{"张","步","峰","是","天","大","学","生"});
//验证去除英文的标点符号
assertAnalyzesTo(a,"张,/步/,峰,.是.,天大<>学生",
new String[]{"张","步","峰","是","天","大","学","生"});
//验证去除中文的标点符号
assertAnalyzesTo(a,"张。、步。、峰是。天大。学生",
new String[]{"张","步","峰","是","天","大","学","生"});
}
public void testChineseAnalyzer() throws Exception{
//可见ChineseAnalyzer在功能上和standardAnalyzer的功能差不多,但是可能在速度上慢于StandardAnalyzer
Analyzer a = new ChineseAnalyzer();
//去空格
assertAnalyzesTo(a,"foo bar Foo Bar",
new String[]{"foo","bar","foo","bar"});
assertAnalyzesTo(a,"foo bar ./ Foo ./ BAR",
new String[]{"foo","bar","foo","bar"});
assertAnalyzesTo(a,"foo ./ a bar such ,./<> FOO THESE BAR ",
new String[]{"foo","bar","foo","bar"});
assertAnalyzesTo(a,"张步峰是天大学生",
new String[]{"张","步","峰","是","天","大","学","生"});
//验证去除英文的标点符号
assertAnalyzesTo(a,"张,/步/,峰,.是.,天大<>学生",
new String[]{"张","步","峰","是","天","大","学","生"});
//验证去除中文的标点符号
assertAnalyzesTo(a,"张。、步。、峰是。天大。学生",
new String[]{"张","步","峰","是","天","大","学","生"});
//不支持中英文写在一起
// assertAnalyzesTo(a,"我爱你 i love chanchan",
/// new String[]{"我","爱","你","i","love","chanchan"});
}
public void testCJKAnalyzer() throws Exception {
//chedong写的CJKAnalyzer的功能在英文处理上的功能和StandardAnalyzer相同
//但是在汉语的分词上,不能过滤掉标点符号,即使用二元切分
Analyzer a = new CJKAnalyzer();
assertAnalyzesTo(a,"foo bar Foo Bar",
new String[]{"foo","bar","foo","bar"});
assertAnalyzesTo(a,"foo bar ./ Foo ./ BAR",
new String[]{"foo","bar","foo","bar"});
assertAnalyzesTo(a,"foo ./ a bar such ,./<> FOO THESE BAR ",
new String[]{"foo","bar","foo","bar"});
// assertAnalyzesTo(a,"张,/步/,峰,.是.,天大<>学生",
// new String[]{"张步","步峰","峰是","是天","天大","大学","学生"});
//assertAnalyzesTo(a,"张。、步。、峰是。天大。学生",
// new String[]{"张步","步峰","峰是","是天","天大","大学","学生"});
//支持中英文同时写
assertAnalyzesTo(a,"张步峰是天大学生 i love",
new String[]{"张步","步峰","峰是","是天","天大","大学","学生","i","love"});
}
public void testTjuChineseAnalyzer() throws Exception{
/**
* TjuChineseAnlyzer的功能相当强大,在中文分词方面由于其调用的为ICTCLAS的java接口.
* 所以其在中文方面性能上同与ICTCLAS.其在英文分词上采用了Lucene的StopAnalyzer,可以去除
* stopWords,而且可以不区分大小写,过滤掉各类标点符号.
*/
Analyzer a = new TjuChineseAnalyzer();
String input = "体育讯 在被尤文淘汰之后,皇马主帅博斯克拒绝接受媒体对球队后防线的批评,同时还为自己排出的首发阵容进行了辩护。"+
"“失利是全队的责任,而不仅仅是后防线该受指责,”博斯克说,“我并不认为我们踢得一塌糊涂。”“我们进入了半决赛,而且在晋级的道路上一路奋 "+
"战。即使是今天的比赛我们也有几个翻身的机会,但我们面对的对手非常强大,他们踢得非常好。”“我们的球迷应该为过去几个赛季里我们在冠军杯中的表现感到骄傲。”"+
"博斯克还说。对于博斯克在首发中排出了久疏战阵的坎比亚索,赛后有记者提出了质疑,认为完全应该将队内的另一 "+
"名球员帕文派遣上场以加强后卫线。对于这一疑议,博斯克拒绝承担所谓的“责任”,认为球队的首发没有问题。“我们按照整个赛季以来的方式做了,"+
"对于人员上的变化我没有什么可说的。”对于球队在本赛季的前景,博斯克表示皇马还有西甲联赛的冠军作为目标。“皇家马德里在冠军 "+
"杯中战斗到了最后,我们在联赛中也将这么做。”"+
"A Java User Group is a group of people who share a common interest in Java technology and meet on a regular basis to share"+
" technical ideas and information. The actual structure of a JUG can vary greatly - from a small number of friends and coworkers"+
" meeting informally in the evening, to a large group of companies based in the same geographic area. "+
"Regardless of the size and focus of a particular JUG, the sense of community spirit remains the same. ";
outputAnalyzer(a,input);
//此处我已经对大文本进行过测试,不会有问题效果很好
outputAnalyzer(a,"我爱 大家 ,,。 I love China 我喜欢唱歌 ");
assertAnalyzesTo(a,"我爱 大家 ,,。I love China 我喜欢唱歌",
new String[]{"爱"," 大家 ","i","love","china","喜欢","唱歌"});
}
}
ExtJS教程- Hibernate教程- Struts2 教程- Lucene教程
注意:Lucene中的一些比较复杂的词法分析是用JavaCC生成的(JavaCC:JavaCompilerCompiler,纯Java的词法 分析生成器),所以如果从源代码编译或需要修改其中的QueryParser、定制自己的词法分析器,还需要从 https://javacc.dev.java.net/下载javacc。
lucene的组成结构:对于外部应用来说索引模块(index)和检索模块(search)是主要的外部应用入口。 org.apache.Lucene.search/ 搜索入口
org.apache.Lucene.index/ 索引入口
org.apache.Lucene.analysis/ 语言分析器
org.apache.Lucene.queryParser/ 查询分析器
org.apache.Lucene.document/ 存储结构
org.apache.Lucene.store/ 底层IO/存储结构
org.apache.Lucene.util/ 一些公用的数据结构
2, 关于计划于词库的分词和一元分词,二元分词的区别. noise.chs 是词库中作为stopword而存在的.请大家注意.
下面做了详细描述:
2006年01月22日 星期日 于 2:39 am · 发表在: 默认
Lucene应用越来越多,在对中文对索引过程中,中文分词问题也就越来越重要。
在已有的分词模式中,目前比较常用的也是比较通用的有一元分词、二元分词和基于词库的分词三种。一元分词在Java版本上由yysun实现,并且已经收录 到Apache。其实现方式比较简单,即将每一个汉字作为一个Token,例如:“这是中文字”,在经过一元分词模式分词后的结果为五个Token:这、 是、中、文、字。而二元分词,则将两个相连的汉字作为一个Token划分,例如:“这是中文字”,运用二元分词模式分词后,得到的结果为:这是、是中、中 文、文字。
一元分词和二元分词实现原理比较简单,基本支持所有东方语言。但二者的缺陷也比较明显。一元分词单纯的考虑了中文的文字而没有考虑到中文的词性,例如在上 述的例子中,“中文”、“文字”这两个十分明显的中文词语就没有被识别出来。相反,二元分词则分出了太多的冗余的中文词,如上所述,“这是”、“是中”毫 无意义的文字组合竟被划分为一个词语,而同样的缺陷,命中的词语也不十分准确,如上:在“这是中文字”中,“中文字”这个词语应该优先考虑的。而二元分词 也未能实现。
基于词库的分词实现难度比较大,其模式也有多种,如微软在自己的软件中的汉语分词、海量的中文分词研究版,还有目前在.Net下实现的使用率较高的猎兔, 和一些其他人自发实现的分词工具等等。其都有自己的分析体系,虽然分析精度高,但实现难度大,实现周期长,而且,对一般的中小型应用系统来讲,在精度的要 求不是十分苛刻的环境下,这种模式对系统对消耗是一种奢侈行为。
在综合考虑一元分词、二元分词及基于词库的分词模式后,我大胆提出一种基于StopWord分割的分词模式。这种分词模式的设计思想是,针对要分割的段 落,先由标点分割成标准的短句。然后根据设定的StopWord,将短句由StopWord最大化分割,分割为一个个词语。如:输入短句为“这是中文字 ”,设定的StopWord列表为:“这”、“是”,则最终的结果为:“中文字”。
这个例子相对比较简单,举个稍微长一点的例子:输入短句“中文软件需要具有对中文文本的输入、显示、编辑、输出等基本功能”,设定的StopWord列表为:“这”、“是”、“的”、“对”、“等”、“需要”、“具有”,则分割出对结果列表为:
====================
中文软件
中文文本
输入
显示
编辑
输出
基本功能
====================
基本实现了想要的结果,但其中也不乏不足之处,如上述的结果中“中文软件”与“中文文本”应该分割为三个独立词“中文”、“软件”和“文本”,而不是上述的结果。
并且,对StopWord列表对设置,也是相对比较复杂的环节,没有一个确定的约束来设定StopWord。我的想法是,可以将一些无意义的主语,如“我 ”、“你”、“他”、“我们”、“他们”等,动词“是”、“对”、“有”等等其他各种词性诸如“的”、“啊”、“一”、“不”、“在”、“人”等等 (System32目录下noise.chs文件里的内容可以作为参考)作为StopWord。
noise.chs 是词库中作为stopword而存在的.请大家注意.
3, 关于分词的.还可以关注这个帖子:
http://lucene-group.group.javaeye.com/group/blog/58701
自己写的一个基于词库的lucene分词程序--ThesaurusAnalyzer
我已经测试过.还可以.18万分词.
4, lucene的自带分词的测试如下:\
Lucene本身提供了几个分词接口,我后来有给写了一个分词接口.
功能递增如下:
WhitespaceAnalyzer:仅仅是去除空格,对字符没有lowcase化,不支持中文
SimpleAnalyzer:功能强于WhitespaceAnalyzer,将除去letter之外的符号全部过滤掉,并且将所有的字符lowcase化,不支持中文
StopAnalyzer:StopAnalyzer的功能超越了SimpleAnalyzer,在SimpleAnalyzer的基础上
增加了去除StopWords的功能,不支持中文
StandardAnalyzer:英文的处理能力同于StopAnalyzer.支持中文采用的方法为单字切分.
ChineseAnalyzer:来自于Lucene的sand box.性能类似于StandardAnalyzer,缺点是不支持中英文混和分词.
CJKAnalyzer:chedong写的CJKAnalyzer的功能在英文处理上的功能和StandardAnalyzer相同
但是在汉语的分词上,不能过滤掉标点符号,即使用二元切分
TjuChineseAnalyzer:我写的,功能最为强大.TjuChineseAnlyzer的功能相当强大,在中文分词方面由于其调用的为 ICTCLAS的java接口.所以其在中文方面性能上同与ICTCLAS.其在英文分词上采用了Lucene的StopAnalyzer,可以去除 stopWords,而且可以不区分大小写,过滤掉各类标点符号.
程序调试于:JBuilder 2005
package org.apache.lucene.analysis;
//Author:zhangbufeng
//TjuAILab(天津大学人工智能实验室)
//2005.9.22.11:00
import java.io.*;
import junit.framework.*;
import org.apache.lucene.*;
import org.apache.lucene.analysis.*;
import org.apache.lucene.analysis.StopAnalyzer;
import org.apache.lucene.analysis.standard.*;
import org.apache.lucene.analysis.cn.*;
import org.apache.lucene.analysis.cjk.*;
import org.apache.lucene.analysis.tjucn.*;
import com.xjt.nlp.word.*;
public class TestAnalyzers extends TestCase {
public TestAnalyzers(String name) {
super(name);
}
public void assertAnalyzesTo(Analyzer a,
String input,
String[] output) throws Exception {
//前面的"dummy"好像没有用到
TokenStream ts = a.tokenStream("dummy", new StringReader(input));
StringReader readerInput=new StringReader(input);
for (int i=0; i Token t = ts.next();
//System.out.println(t);
assertNotNull(t);
//使用下面这条语句即可以输出Token的每项的text,并且用空格分开
System.out.print(t.termText);
System.out.print(" ");
assertEquals(t.termText(), output );
}
System.out.println(" ");
assertNull(ts.next());
ts.close();
}
public void outputAnalyzer(Analyzer a ,String input) throws Exception{
TokenStream ts = a.tokenStream("dummy",new StringReader(input));
StringReader readerInput = new StringReader(input);
while(true){
Token t = ts.next();
if(t!=null){
System.out.print(t.termText);
System.out.print(" ");
}
else
break;
}
System.out.println(" ");
ts.close();
}
public void testSimpleAnalyzer() throws Exception {
//学习使用SimpleAnalyzer();
//SimpleAnalyzer将除去letter之外的符号全部过滤掉,并且将所有的字符lowcase化
Analyzer a = new SimpleAnalyzer();
assertAnalyzesTo(a, "foo bar FOO BAR",
new String[] { "foo", "bar", "foo", "bar" });
assertAnalyzesTo(a, "foo bar . FOO <> BAR",
new String[] { "foo", "bar", "foo", "bar" });
assertAnalyzesTo(a, "foo.bar.FOO.BAR",
new String[] { "foo", "bar", "foo", "bar" });
assertAnalyzesTo(a, "U.S.A.",
new String[] { "u", "s", "a" });
assertAnalyzesTo(a, "C++",
new String[] { "c" });
assertAnalyzesTo(a, "B2B",
new String[] { "b", "b" });
assertAnalyzesTo(a, "2B",
new String[] { "b" });
assertAnalyzesTo(a, "\"QUOTED\" word",
new String[] { "quoted", "word" });
assertAnalyzesTo(a,"zhang ./ bu <> feng",
new String[]{"zhang","bu","feng"});
ICTCLAS splitWord = new ICTCLAS();
String result = splitWord.paragraphProcess("我爱大家 i LOVE chanchan");
assertAnalyzesTo(a,result,
new String[]{"我","爱","大家","i","love","chanchan"});
}
public void testWhiteSpaceAnalyzer() throws Exception {
//WhiterspaceAnalyzer仅仅是去除空格,对字符没有lowcase化
Analyzer a = new WhitespaceAnalyzer();
assertAnalyzesTo(a, "foo bar FOO BAR",
new String[] { "foo", "bar", "FOO", "BAR" });
assertAnalyzesTo(a, "foo bar . FOO <> BAR",
new String[] { "foo", "bar", ".", "FOO", "<>", "BAR" });
assertAnalyzesTo(a, "foo.bar.FOO.BAR",
new String[] { "foo.bar.FOO.BAR" });
assertAnalyzesTo(a, "U.S.A.",
new String[] { "U.S.A." });
assertAnalyzesTo(a, "C++",
new String[] { "C++" });
assertAnalyzesTo(a, "B2B",
new String[] { "B2B" });
assertAnalyzesTo(a, "2B",
new String[] { "2B" });
assertAnalyzesTo(a, "\"QUOTED\" word",
new String[] { "\"QUOTED\"", "word" });
assertAnalyzesTo(a,"zhang bu feng",
new String []{"zhang","bu","feng"});
ICTCLAS splitWord = new ICTCLAS();
String result = splitWord.paragraphProcess("我爱大家 i love chanchan");
assertAnalyzesTo(a,result,
new String[]{"我","爱"," 大家 ","i","love","chanchan"});
}
public void testStopAnalyzer() throws Exception {
//StopAnalyzer的功能超越了SimpleAnalyzer,在SimpleAnalyzer的基础上
//增加了去除StopWords的功能
Analyzer a = new StopAnalyzer();
assertAnalyzesTo(a, "foo bar FOO BAR",
new String[] { "foo", "bar", "foo", "bar" });
assertAnalyzesTo(a, "foo a bar such FOO THESE BAR",
new String[] { "foo", "bar", "foo", "bar" });
assertAnalyzesTo(a,"foo ./ a bar such ,./<> FOO THESE BAR ",
new String[]{"foo","bar","foo","bar"});
ICTCLAS splitWord = new ICTCLAS();
String result = splitWord.paragraphProcess("我爱 大家 i Love chanchan such");
assertAnalyzesTo(a,result,
new String[]{"我","爱"," 大家 ","i","love","chanchan"});
}
public void testStandardAnalyzer() throws Exception{
//StandardAnalyzer的功能最为强大,对于中文采用的为单字切分
Analyzer a = new StandardAnalyzer();
assertAnalyzesTo(a,"foo bar Foo Bar",
new String[]{"foo","bar","foo","bar"});
assertAnalyzesTo(a,"foo bar ./ Foo ./ BAR",
new String[]{"foo","bar","foo","bar"});
assertAnalyzesTo(a,"foo ./ a bar such ,./<> FOO THESE BAR ",
new String[]{"foo","bar","foo","bar"});
assertAnalyzesTo(a,"张步峰是天大学生",
new String[]{"张","步","峰","是","天","大","学","生"});
//验证去除英文的标点符号
assertAnalyzesTo(a,"张,/步/,峰,.是.,天大<>学生",
new String[]{"张","步","峰","是","天","大","学","生"});
//验证去除中文的标点符号
assertAnalyzesTo(a,"张。、步。、峰是。天大。学生",
new String[]{"张","步","峰","是","天","大","学","生"});
}
public void testChineseAnalyzer() throws Exception{
//可见ChineseAnalyzer在功能上和standardAnalyzer的功能差不多,但是可能在速度上慢于StandardAnalyzer
Analyzer a = new ChineseAnalyzer();
//去空格
assertAnalyzesTo(a,"foo bar Foo Bar",
new String[]{"foo","bar","foo","bar"});
assertAnalyzesTo(a,"foo bar ./ Foo ./ BAR",
new String[]{"foo","bar","foo","bar"});
assertAnalyzesTo(a,"foo ./ a bar such ,./<> FOO THESE BAR ",
new String[]{"foo","bar","foo","bar"});
assertAnalyzesTo(a,"张步峰是天大学生",
new String[]{"张","步","峰","是","天","大","学","生"});
//验证去除英文的标点符号
assertAnalyzesTo(a,"张,/步/,峰,.是.,天大<>学生",
new String[]{"张","步","峰","是","天","大","学","生"});
//验证去除中文的标点符号
assertAnalyzesTo(a,"张。、步。、峰是。天大。学生",
new String[]{"张","步","峰","是","天","大","学","生"});
//不支持中英文写在一起
// assertAnalyzesTo(a,"我爱你 i love chanchan",
/// new String[]{"我","爱","你","i","love","chanchan"});
}
public void testCJKAnalyzer() throws Exception {
//chedong写的CJKAnalyzer的功能在英文处理上的功能和StandardAnalyzer相同
//但是在汉语的分词上,不能过滤掉标点符号,即使用二元切分
Analyzer a = new CJKAnalyzer();
assertAnalyzesTo(a,"foo bar Foo Bar",
new String[]{"foo","bar","foo","bar"});
assertAnalyzesTo(a,"foo bar ./ Foo ./ BAR",
new String[]{"foo","bar","foo","bar"});
assertAnalyzesTo(a,"foo ./ a bar such ,./<> FOO THESE BAR ",
new String[]{"foo","bar","foo","bar"});
// assertAnalyzesTo(a,"张,/步/,峰,.是.,天大<>学生",
// new String[]{"张步","步峰","峰是","是天","天大","大学","学生"});
//assertAnalyzesTo(a,"张。、步。、峰是。天大。学生",
// new String[]{"张步","步峰","峰是","是天","天大","大学","学生"});
//支持中英文同时写
assertAnalyzesTo(a,"张步峰是天大学生 i love",
new String[]{"张步","步峰","峰是","是天","天大","大学","学生","i","love"});
}
public void testTjuChineseAnalyzer() throws Exception{
/**
* TjuChineseAnlyzer的功能相当强大,在中文分词方面由于其调用的为ICTCLAS的java接口.
* 所以其在中文方面性能上同与ICTCLAS.其在英文分词上采用了Lucene的StopAnalyzer,可以去除
* stopWords,而且可以不区分大小写,过滤掉各类标点符号.
*/
Analyzer a = new TjuChineseAnalyzer();
String input = "体育讯 在被尤文淘汰之后,皇马主帅博斯克拒绝接受媒体对球队后防线的批评,同时还为自己排出的首发阵容进行了辩护。"+
"“失利是全队的责任,而不仅仅是后防线该受指责,”博斯克说,“我并不认为我们踢得一塌糊涂。”“我们进入了半决赛,而且在晋级的道路上一路奋 "+
"战。即使是今天的比赛我们也有几个翻身的机会,但我们面对的对手非常强大,他们踢得非常好。”“我们的球迷应该为过去几个赛季里我们在冠军杯中的表现感到骄傲。”"+
"博斯克还说。对于博斯克在首发中排出了久疏战阵的坎比亚索,赛后有记者提出了质疑,认为完全应该将队内的另一 "+
"名球员帕文派遣上场以加强后卫线。对于这一疑议,博斯克拒绝承担所谓的“责任”,认为球队的首发没有问题。“我们按照整个赛季以来的方式做了,"+
"对于人员上的变化我没有什么可说的。”对于球队在本赛季的前景,博斯克表示皇马还有西甲联赛的冠军作为目标。“皇家马德里在冠军 "+
"杯中战斗到了最后,我们在联赛中也将这么做。”"+
"A Java User Group is a group of people who share a common interest in Java technology and meet on a regular basis to share"+
" technical ideas and information. The actual structure of a JUG can vary greatly - from a small number of friends and coworkers"+
" meeting informally in the evening, to a large group of companies based in the same geographic area. "+
"Regardless of the size and focus of a particular JUG, the sense of community spirit remains the same. ";
outputAnalyzer(a,input);
//此处我已经对大文本进行过测试,不会有问题效果很好
outputAnalyzer(a,"我爱 大家 ,,。 I love China 我喜欢唱歌 ");
assertAnalyzesTo(a,"我爱 大家 ,,。I love China 我喜欢唱歌",
new String[]{"爱"," 大家 ","i","love","china","喜欢","唱歌"});
}
}
ExtJS教程- Hibernate教程- Struts2 教程- Lucene教程