高斯消元模板——整数参数型

#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <ctime>
#include <cmath>

#include <iostream>
#include <string>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <list>
#include <algorithm>

using namespace std;

typedef long long LL;
typedef double DB;
typedef unsigned long long ULL;
typedef unsigned int Uint;

const int INT_INF=0x3fffffff;
const LL LL_INF=0x3fffffffffffffff;
const DB EPS=1e-9;
const DB PI=3.14159265358979323846;
const int N=10010;
const int E=10010;

#define PB push_back
#define MP make_pair
#define MH make_heap
#define PH push

int A[N][N];
int Up[N], Down[N];  //Up 存储的是分子, Down存储的是分母
bool Free[N];
int equation, variable;

void debug()
{
    printf("The Matrix is :\n");
    for(int i=0; i<=variable+1; i++)
    {
        printf("%4d",i);
        if(i==0) printf("|");
    }
    printf("\n");
    for(int i=0; i<=variable+1; i++)
    {
        printf("---");
        if(i==0) printf("-+");
        else printf("-");
    }
    printf("\n");

    for(int i=1; i<=equation; i++)
    {
        printf("%4d|",i);
        for(int j=1; j<=variable+1; j++)
        {
            printf("%4d",A[i][j]);
        }
        printf("\n");
    }
    printf("\n");
}

/***************************************************************************/
/*    功能说明:
/*    1、不需带入参数,参数已经在 build() 函数中设置好了
/*    2、函数返回 -1 :无解
/*    3、函数返回 0  :有且仅有一组解
/*    4、函数返回 其他正数 :有多解,返回的值是不确定变元的个数
/**************************************************************************/
int gauss()
{
    int col=1, row=1;
    for(; row<=equation && col<=variable; row++, col++)
    {
        int max_row=row;

        //找到 col 那列元素绝对值最大的那行与当前行交换,减小精度误差
        for(int i=row+1; i<=equation; i++)
            if(abs(A[i][col])>abs(A[max_row][col]))
                max_row=i;

        //如果 col 那列元素最大是 0,表明这一列全部是 0,处理下一列
        if(A[max_row][col]==0)
        {
            row--;
            continue;
        }

        //如果不是同一行,交换元素
        if(max_row!=row)
        {
            for(int i=col; i<=variable+1; i++)
                swap(A[max_row][i], A[row][i]);
        }

        //枚举要删去的行
        //for(int i=row+1; i<=equation; i++)
        for(int i=1; i<=equation; i++)
        {
            if(i==row) continue;
            if(A[i][col]==0) continue;
            int GCD=__gcd(abs(A[i][col]), abs(A[row][col]));
            int ta=abs(A[row][col]) / GCD;
            int tb=abs(A[i][col])   / GCD;

//            printf("ta=%d tb=%d\n",ta,tb);

            //如果异号,应该相加
            if((A[i][col]>0 && A[row][col]<0) || (A[i][col]<0 && A[row][col]>0)) tb=-tb;

            //对于 j 的起点问题,如果我是只把当前行后面的行的元素消掉,我可以是从 col 开始,
            //但如果是从第一行开始消掉,必须从 1 开始
            for(int j=1; j<=variable+1; j++)
                A[i][j]=A[i][j]*ta-A[row][j]*tb;
            //A[i][j]-=A[row][j]*tb/ta;
        }
//        printf("row=%d col=%d\n", row, col);
//        debug();
    }

//    debug();

    // 1、没有解的情况:
    for(int i=row; i<=equation; i++)
        if(A[i][variable+1]!=0) return -1; //表明无解

    // 2、无穷解的情况:
    if(row<variable+1)
    {
        for(int i=row-1; i>=1; i--)
        {
            int free_x_num=0, free_index=-1;
            for(int j=1; j<=variable; j++)
                if(Free[j] && A[i][j]!=0)
                {
                    free_x_num++;
                    free_index=j;
                }
            if(free_x_num>1) continue;

            Free[free_index]=false;
            int Up_temp=A[i][variable+1];
            int Down_temp=1;
            for(int j=1; j<=variable; j++)
                if(A[i][j]!=0 && j!=free_index)
                {
                    int GCD=__gcd(abs(Down[j]), abs(A[i][j]));
                    int U=Up[j]*A[i][j]/GCD;
                    int D=Down[j]/GCD;
                    GCD=__gcd(abs(D), abs(Down_temp));
                    int ta=D/GCD;
                    int tb=Down_temp/GCD;
                    Up_temp=Up_temp*ta-U*tb;
                    Down_temp*=ta;
                    GCD=__gcd(abs(Up_temp), abs(Down_temp));
                    Up_temp/=GCD;
                    Down_temp/=GCD;
                }
            if(Up_temp==0)
            {
                Up[free_index]=0;
                continue;
            }
            int GCD=__gcd(abs(Up_temp), abs(A[i][free_index]));
            Down[free_index]=A[i][free_index]/GCD*Down_temp;
            Up[free_index]=Up_temp/GCD;
        }
        return variable-row+1;
    }

    // 3、唯一解的情况:
    for(int i=variable; i>=1; i--)
    {
        int Up_temp=A[i][variable+1];
        int Down_temp=1;
        for(int j=i+1; j<=variable; j++)
            if(A[i][j]!=0)
            {
                int GCD=__gcd(abs(Down[j]), abs(A[i][j]));
                int U=Up[j]*A[i][j]/GCD;
                int D=Down[j]/GCD;
                GCD=__gcd(abs(D), abs(Down_temp));
                int ta=D/GCD;
                int tb=Down_temp/GCD;
                Up_temp=Up_temp*ta-U*tb;
                Down_temp*=ta;
                GCD=__gcd(abs(Up_temp), abs(Down_temp));
                Up_temp/=GCD;
                Down_temp/=GCD;
            }
        if(Up_temp==0)
        {
            Up[i]=0;
            continue;
        }
        int GCD=__gcd(abs(Up_temp), abs(A[i][i]));
        Down[i]=A[i][i]/GCD*Down_temp;
        Up[i]=Up_temp/GCD;
    }
    return 0;
}

void build(int n, int m)
{
    memset(Free, true, sizeof(Free));
    memset(Up, 0, sizeof(Up));
    for(int i=0; i<N; i++)
        Down[i]=1;

    variable=n, equation=m;
    for(int i=1; i<=equation; i++)
        for(int j=1; j<=variable+1; j++)
            scanf("%d",&A[i][j]);
    debug();
}

void PRINT(int flag)
{
    if(flag==-1)
    {
        printf("NO Solution !\n");
        return;
    }
    if(flag==0)
    {
        for(int i=1; i<=variable; i++)
            printf("x%d : %d/%d\n", i, Up[i], Down[i]);
        return;
    }
    printf("There are %d variables who are indeterminate !\n",flag);
    for(int i=1; i<=variable; i++)
    {
        printf("x%d : ", i);
        if(Free[i]) printf("indeterminate !\n");
        else printf("%d/%d\n",Up[i], Down[i]);
    }
}

int main()
{
    freopen("C:/Users/zhj5chengfeng/Desktop/in.txt","r",stdin);
    freopen("C:/Users/zhj5chengfeng/Desktop/out.txt","w",stdout);
    int ca=0;
    while(~scanf("%d%d", &variable, &equation))
    {
        printf("Case #%d :\n", ++ca);
        build(variable, equation);
        PRINT(gauss());
        printf("\n\n\n\n");
    }
    return 0;
}
/*
Input:

4 3
1 -2 1 5 3
1 -2 4 -34 0
2 -4 3 -3 5

2 2
1 2 27
2 1 0

3 3
3 -1 5 3
1 -1 2 1
1 -2 -1 2

Output:

Case #1 :
The Matrix is :
   0|   1   2   3   4   5
----+--------------------
   1|   1  -2   1   5   3
   2|   1  -2   4 -34   0
   3|   2  -4   3  -3   5

There are 2 variables who are indeterminate !
x1 : indeterminate !
x2 : indeterminate !
x3 : indeterminate !
x4 : indeterminate !




Case #2 :
The Matrix is :
   0|   1   2   3
----+------------
   1|   1   2  27
   2|   2   1   0

x1 : -9/1
x2 : 18/1




Case #3 :
The Matrix is :
   0|   1   2   3   4
----+----------------
   1|   3  -1   5   3
   2|   1  -1   2   1
   3|   1  -2  -1   2

x1 : 10/7
x2 : 1/-7
x3 : -2/7





*/

你可能感兴趣的:(高斯消元模板——整数参数型)