概要

这个类在 Oracle 的官方文档里是查不到的,但是确实在 OpenJDK 的源代码里出现了,Arrays 中的 sort 函数用到了这个用于排序的类。它将归并排序(merge sort) 与插入排序(insertion sort) 结合,并进行了一些优化。对于已经部分排序的数组,时间复杂度远低于 O(n log(n)),最好可达 O(n),对于随机排序的数组,时间复杂度为 O(nlog(n)),平均时间复杂度 O(nlog(n))。强烈建议在看此文前观看 Youtube 上的 可视化Timsort,看完后马上就会对算法的执行过程有一个感性的了解。然后,可以阅读 Wikipeida 词条:Timsort。 这个排序算法在 Java SE 7, Android, GNU Octave 中都得到了应用。另外,文 后也推荐了两篇非常好的文章,如果想搞明白 TimSort 最好阅读一下。

此类是对 Python 中,由 Tim Peters 实现的排序算法的改写。实现来自:listobject.c.

原始论文来自:

"Optimistic Sorting and Information Theoretic Complexity" Peter  McIlroy SODA (Fourth Annual ACM-SIAM Symposium on Discrete  Algorithms), pp 467-474, Austin, Texas, 25-27 January 1993. 

实现

  • sort
static <T> void sort(T[] a, int lo, int hi, Comparator<? super T> c) {     if (c == null) {         Arrays.sort(a, lo, hi);         return;     }      rangeCheck(a.length, lo, hi);     int nRemaining  = hi - lo;     if (nRemaining < 2)         return;  // Arrays of size 0 and 1 are always sorted      // If array is small, do a "mini-TimSort" with no merges     if (nRemaining < MIN_MERGE) {         int initRunLen = countRunAndMakeAscending(a, lo, hi, c);         binarySort(a, lo, hi, lo + initRunLen, c);         return;     }      /**      * March over the array once, left to right, finding natural runs,      * extending short natural runs to minRun elements, and merging runs      * to maintain stack invariant.      */     TimSort<T> ts = new TimSort<>(a, c);     int minRun = minRunLength(nRemaining);     do {         // Identify next run         int runLen = countRunAndMakeAscending(a, lo, hi, c);          // If run is short, extend to min(minRun, nRemaining)         if (runLen < minRun) {             int force = nRemaining <= minRun ? nRemaining : minRun;             binarySort(a, lo, lo + force, lo + runLen, c);             runLen = force;         }          // Push run onto pending-run stack, and maybe merge         ts.pushRun(lo, runLen);         ts.mergeCollapse();          // Advance to find next run         lo += runLen;         nRemaining -= runLen;     } while (nRemaining != 0);      // Merge all remaining runs to complete sort     assert lo == hi;     ts.mergeForceCollapse();     assert ts.stackSize == 1; } 

下面分段解释:

if (c == null) {     Arrays.sort(a, lo, hi);     return; } 

如果没有提供 Comparaotr 的话,会调用 Arrays.sort 中的函数,背后其实又会调用 ComparableTimSort,它是对没有提供Comparator ,但是实现了 Comparable 的元素进行排序,算法和这里的是一样的,就是元素比较方法不一样。

后面是算法的主体:

    if (nRemaining < 2)         return;  // Arrays of size 0 and 1 are always sorted      // If array is small, do a "mini-TimSort" with no merges     if (nRemaining < MIN_MERGE) {         int initRunLen = countRunAndMakeAscending(a, lo, hi, c);         binarySort(a, lo, hi, lo + initRunLen, c);         return;     }  
  1. 如果元素个数小于2,直接返回,因为这两个元素已经排序了
  2. 如果元素个数小于一个阈值(默认为),调用 binarySort,这是一个不包含合并操作的 mini-TimSort
  3. 在关键的 do-while 循环中,不断地进行排序,合并,排序,合并,一直到所有数据都处理完。
    TimSort<T> ts = new TimSort<>(a, c);     int minRun = minRunLength(nRemaining);     do {          ...      } while (nRemaining != 0); 
  • minRunLength

这个函数会找出 run 的最小长度,少于这个长度就需要对其进行扩展。

static int minRunLength(int n) {         assert n >= 0;         int r = 0;      // Becomes 1 if any 1 bits are shifted off         while (n >= MIN_MERGE) {             r |= (n & 1);             n >>= 1;         }         return n + r;     } 

先看看 n 与 minRunLength(n) 对应关系

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 20 20 21 21 22 22 23 23 24 24 25 25 26 26 27 27 28 28 29 29 30 30 31 31 32 16 33 17 34 17 35 18 36 18 37 19 38 19 39 20 40 20 41 21 42 21 43 22 44 22 45 23 46 23 47 24 48 24 49 25 50 25 51 26 52 26 53 27 54 27 55 28 56 28 57 29 58 29 59 30 60 30 61 31 62 31 63 32 64 16 65 17 66 17 67 17 68 17 69 18 70 18 71 18 72 18 73 19 74 19 75 19 76 19 77 20 78 20 79 20 80 20 81 21 82 21 83 21 84 21 85 22 86 22 87 22 88 22 89 23 90 23 91 23 92 23 93 24 94 24 95 24 96 24 97 25 98 25 99 25  ... 

看这个估计可以猜出来函数的功能了,下面解释一下。

这个函数根据 n 计算出对应的 natural run 的最小长度。MIN_MERGE 默认为 32,如果n小于此值,那么返回 n 本身。否则会将 n 不断地右移,直到少于 MIN_MERGE,同时记录一个 r 值,r 代表最后一次移位n时,n最低位是0还是1。 最后返回 n + r,这也意味着只保留最高的 5 位,再加上第六位。

  • do-while

我们再看看 do-while 中发生了什么。

   TimSort<T> ts = new TimSort<>(a, c);     int minRun = minRunLength(nRemaining);     do {         // Identify next run         int runLen = countRunAndMakeAscending(a, lo, hi, c);          // If run is short, extend to min(minRun, nRemaining)         if (runLen < minRun) {             int force = nRemaining <= minRun ? nRemaining : minRun;             binarySort(a, lo, lo + force, lo + runLen, c);             runLen = force;         }          // Push run onto pending-run stack, and maybe merge         ts.pushRun(lo, runLen);         ts.mergeCollapse();          // Advance to find next run         lo += runLen;         nRemaining -= runLen;     } while (nRemaining != 0); 

countRunAndMakeAscending 会找到一个 run ,这个 run 必须是已经排序的,并且函数会保证它为升序,也就是说,如果找到的是一个降序的,会对其进行翻转。

简单看一眼这个函数:

  • countRunAndMakeAscending
private static <T> int countRunAndMakeAscending(T[] a, int lo, int hi,                                                 Comparator<? super T> c) {     assert lo < hi;     int runHi = lo + 1;     if (runHi == hi)         return 1;      // Find end of run, and reverse range if descending     if (c.compare(a[runHi++], a[lo]) < 0) { // Descending         while (runHi < hi && c.compare(a[runHi], a[runHi - 1]) < 0)             runHi++;         reverseRange(a, lo, runHi);     } else {                              // Ascending         while (runHi < hi && c.compare(a[runHi], a[runHi - 1]) >= 0)             runHi++;     }      return runHi - lo; } 

注意其中的 reverseRange 就是我们说的翻转。

现在,有必要看一下 binarySort 了。

private static <T> void binarySort(T[] a, int lo, int hi, int start,                                    Comparator<? super T> c) {     assert lo <= start && start <= hi;     if (start == lo)         start++;     for ( ; start < hi; start++) {         T pivot = a[start];          // Set left (and right) to the index where a[start] (pivot) belongs         int left = lo;         int right = start;         assert left <= right;         /*          * Invariants:          *   pivot >= all in [lo, left).          *   pivot <  all in [right, start).          */         while (left < right) {             int mid = (left + right) >>> 1;             if (c.compare(pivot, a[mid]) < 0)                 right = mid;             else                 left = mid + 1;         }         assert left == right;          /*          * The invariants still hold: pivot >= all in [lo, left) and          * pivot < all in [left, start), so pivot belongs at left.  Note          * that if there are elements equal to pivot, left points to the          * first slot after them -- that's why this sort is stable.          * Slide elements over to make room for pivot.          */         int n = start - left;  // The number of elements to move         // Switch is just an optimization for arraycopy in default case         switch (n) {             case 2:  a[left + 2] = a[left + 1];             case 1:  a[left + 1] = a[left];                      break;             default: System.arraycopy(a, left, a, left + 1, n);         }         a[left] = pivot;     } } 

我们都听说过 binarySearch ,但是这个 binarySort 又是什么呢? binarySort 对数组 a[lo:hi] 进行排序,并且a[lo:start] 是已经排好序的。算法的思路是对 a[start:hi] 中的元素,每次使用 binarySearch 为它在 a[lo:start] 中找到相应位置,并插入。

回到 do-while 循环中,看看 binarySearch 的作用:

  // If run is short, extend to min(minRun, nRemaining)     if (runLen < minRun) {         int force = nRemaining <= minRun ? nRemaining : minRun;         binarySort(a, lo, lo + force, lo + runLen, c);         runLen = force;     } 

所以,我们明白了,binarySort 对 run 进行了扩展,并且扩展后,run 仍然是有序的。

随后:

   // Push run onto pending-run stack, and maybe merge     ts.pushRun(lo, runLen);     ts.mergeCollapse();      // Advance to find next run     lo += runLen;     nRemaining -= runLen; 

当前的 run 位于 a[lo:runLen] ,将其入栈,然后将栈中的 run 合并。

  • pushRun
private void pushRun(int runBase, int runLen) {     this.runBase[stackSize] = runBase;     this.runLen[stackSize] = runLen;     stackSize++; } 

入栈过程简单明了,不解释。

再看另一个关键函数,合并操作。如果你看过文章开头提到的对 Timsort 进行可视化的视频,一定会对合并操作印象深刻。它会把已经排序的 run 合并成一个大 run,此大 run 也会排好序。

/**  * Examines the stack of runs waiting to be merged and merges adjacent runs  * until the stack invariants are reestablished:  *  *     1. runLen[i - 3] > runLen[i - 2] + runLen[i - 1]  *     2. runLen[i - 2] > runLen[i - 1]  *  * This method is called each time a new run is pushed onto the stack,  * so the invariants are guaranteed to hold for i < stackSize upon  * entry to the method.  */ private void mergeCollapse() {     while (stackSize > 1) {         int n = stackSize - 2;         if (n > 0 && runLen[n-1] <= runLen[n] + runLen[n+1]) {             if (runLen[n - 1] < runLen[n + 1])                 n--;             mergeAt(n);         } else if (runLen[n] <= runLen[n + 1]) {             mergeAt(n);         } else {             break; // Invariant is established         }     } } 

合并的过程会一直循环下去,一直到注释里提到的循环不变式得到满足。

  • mergeAt

mergeAt 会把栈顶的两个 run 合并起来:

   /**      * Merges the two runs at stack indices i and i+1.  Run i must be      * the penultimate or antepenultimate run on the stack.  In other words,      * i must be equal to stackSize-2 or stackSize-3.      *      * @param i stack index of the first of the two runs to merge  */ private void mergeAt(int i) {     assert stackSize >= 2;     assert i >= 0;     assert i == stackSize - 2 || i == stackSize - 3;      int base1 = runBase[i];     int len1 = runLen[i];     int base2 = runBase[i + 1];     int len2 = runLen[i + 1];     assert len1 > 0 && len2 > 0;     assert base1 + len1 == base2;      /*      * Record the length of the combined runs; if i is the 3rd-last      * run now, also slide over the last run (which isn't involved      * in this merge).  The current run (i+1) goes away in any case.      */     runLen[i] = len1 + len2;     if (i == stackSize - 3) {         runBase[i + 1] = runBase[i + 2];         runLen[i + 1] = runLen[i + 2];     }     stackSize--;      /*      * Find where the first element of run2 goes in run1. Prior elements      * in run1 can be ignored (because they're already in place).      */     int k = gallopRight(a[base2], a, base1, len1, 0, c);     assert k >= 0;     base1 += k;     len1 -= k;     if (len1 == 0)         return;      /*      * Find where the last element of run1 goes in run2. Subsequent elements      * in run2 can be ignored (because they're already in place).      */     len2 = gallopLeft(a[base1 + len1 - 1], a, base2, len2, len2 - 1, c);     assert len2 >= 0;     if (len2 == 0)         return;      // Merge remaining runs, using tmp array with min(len1, len2) elements     if (len1 <= len2)         mergeLo(base1, len1, base2, len2);     else         mergeHi(base1, len1, base2, len2); } 

由于要合并的两个 run 是已经排序的,所以合并的时候,有会特别的技巧。假设两个 run 是 run1,run2 ,先用 gallopRight在 run1 里使用 binarySearch 查找 run2 首元素 的位置 k, 那么 run1 中 k 前面的元素就是合并后最小的那些元素。然后,在 run2 中查找 run1 尾元素 的位置 len2 ,那么 run2 中 len2 后面的那些元素就是合并后最大的那些元素。最后,根据len1 与 len2 大小,调用 mergeLo 或者 mergeHi 将剩余元素合并。

gallop 和 merge 就不展开了。

另外,强烈推荐阅读文后的两篇文章,第一篇可以看到 JDK7 中更换排序算法后可能引发的问题,另外,也会介绍源代码,并给出具体的例子。第二篇会告诉你如何对一个 MergeSort 进行优化,介绍了 TimSort 背后的思想。

推荐阅读

  • TimSort in Java 7
  • 理解timsort
  • 上一篇OpenJDK 源代码阅读之 Collections
  • 下一篇OpenJDK 源码阅读之 Java 字节流输入类的实现
1