- 现在受大众喜爱的DeepSeek是如何做到对中文语境理解更深入的?
Helena__a
opencv人工智能
DeepSeek做到对中文语境理解更深入,主要通过以下几种方式:先进的智能分词技术:准确的词汇分割:能够准确地将中文句子分割成独立的词汇。中文语言相较于英文等语言,在词语的组合和分隔上相对复杂,不存在明显的空格等分隔符。DeepSeek的智能分词技术可以依据大量的语言数据和复杂的算法,精准地识别出词语的边界,比如能正确区分“马上出发”中的“马上”是一个时间副词,而“我喜欢骑马”中的“马”是一个单独
- 智能测试用例生成:分块实现大模型完整回答的最佳策略
Python测试之道
测试提效测试用例服务器运维
DeepseekAPI+Python测试用例一键生成与导出V1.0.5工具,随着需求文档和接口文档的复杂性和长度不断增加,基于大模型生成测试用例的任务也变得更加挑战。尤其当文档内容过多时,大模型可能因输入长度限制而无法提供完整的回答。这种情况下,合理的分词策略不仅可以有效解决问题,还能提升生成过程的效率和准确性。1.为什么需要分块?大模型(如GPT系列)通常对输入长度有严格限制。如果直接将超长的文
- 【大模型开发】将vocab解码
SUNX-T
大模型python语言模型
【大模型开发】将vocab解码在这篇博客中【大模型】tokenizer中编码过程,说明了tokenizer分词编码过程。在这里,我在简单叙述一下,vocab.json文件中存储的是一个字典,key是token分词标记,value是这个token对应的代码点。举个例子:词汇你好;在Qwen的词汇表中使用一个token表示的,按理来说,我们可以直接在vocab.json文件中直接表示为"你好":108
- Elasticsearch 分词器
FearlessVoyager
elasticsearchelasticsearchjenkins大数据
一、简介在Elasticsearch中,分词器(Analyzer)是文本处理的核心组件,用于将文本拆分为词项(Terms),并对词项进行标准化处理。分词器在索引和搜索过程中起着至关重要的作用,直接影响搜索的准确性和性能。二、分词器的组成Elasticsearch的分词器由以下三个部分组成:字符过滤器(CharacterFilters):在分词之前对原始文本进行预处理。例如,去除HTML标签、替换特
- 知识图谱问答系列文档(一)——思知机器人简介
AI小波哥
智能问答自然语言处理知识图谱
(一)思知项目介绍思知机器人项目简介知识图谱对话机器人思知机器人项目简介思知项目开放了对话机器人、知识图谱、语义理解、自然语言处理工具。知识图谱融合了两千五百多万的实体,拥有亿级别的实体属性关系,机器人采用了基于知识图谱的语义感知与理解,致力于最强认知大脑。自然语言处理工具包的功能有:中文分词、词性标注、命名实体识别、关键词提取、文本摘要、新词发现、情感分析等。开放的项目有:-知识图谱-对话机器人
- 从零构建大语言模型全栈开发指南:第二部分:模型架构设计与实现-2.2.1从零编写类GPT-2模型架构(规划模块与代码组织)
言析数智
从零开始构建大模型人工智能大语言模型嵌入层解码层FFN前馈网络
点击关注不迷路点击关注不迷路点击关注不迷路文章大纲2.2.1从零编写类GPT-2模型架构(规划模块与代码组织)1.模型架构设计规划1.1架构核心组件2.模块化设计实现2.1输入处理模块2.1.1分词与嵌入2.1.2位置编码2.2解码块设计2.2.1多头注意力子层2.2.2前馈网络子层3.代码组织策略3.1模块化架构设计3.2核心类结构设计表2:配置类参数设计4.关键实现细节4.1掩码机制实现4.1
- docker 安装镜像及使用命令
时间头秃大师
docker容器运维
目录1.Mysql2.Redis3.Nginx4.Elasticsearch单机ik分词器官网集群指导个人集群5.RocketMQdockerpull容器名:版本号拉取容器,不指定版本号默认最新的dockerexec-it容器名称bash可以进入该容器,进行操作run命令解释-d后台启动-p宿主机端口:容器端口--name容器名称-epass_word=123456(环境变量,k=v)-v目录映射
- ES分布式搜索引擎
Lyqfor
Java实习工作学习日记搜索引擎elasticsearch分布式javaJUC
ES分布式搜索引擎当我们要查找一个数据时,多个文本中的某个字段,可以遍历所有的文本然后查询,但是效率很低故可以使用倒排索引,先对每个文本进行分词,得到每个词项,然后记录每个词项在哪些文本中出现过,就得到了一个倒排索引,其中某一列是所有的词项字典,每个词项有一个PostingList保存该词项在哪些文本中出现过,记录文本ID因为以上的倒排索引是在磁盘中的,故每次查询时还要进行IO操作,且仍要遍历所有
- MySQL数据库:FULLTEXT 索引详解与使用指南
sg_knight
数据库数据库mysql索引FLULTEXT搜索
在MySQL数据库中,FULLTEXT索引是一种专门用于文本搜索的索引类型。它允许用户对存储在CHAR、VARCHAR或TEXT类型字段中的文本数据进行全文搜索。与普通的B-tree索引不同,FULLTEXT索引不是对单个值进行索引,而是对文本内容进行分词,并对这些词进行索引,以便在查询时能够快速找到包含指定词的记录。一、FULLTEXT索引的创建FULLTEXT索引可以在创建表时直接定义,也可以
- Elasticsearch 入门到精通-Ansj分词器的安装和使用
王stone
elasticsearchelasticsearch大数据bigdata
一、版本和对应关系pluginelasticsearch7.6.27.6.27.7.07.7.07.7.17.7.17.8.07.8.07.8.17.8.17.9.07.9.07.9.17.9.17.9.27.9.27.9.37.9.3二、安装步骤1、下载安装ES对应PluginRelease版本a.GitHub-NLPchina/elasticsearch-analysis-ansjb.解压el
- AI Tokenization
spencer_tseng
AIAITokenization
AITokenization人工智能分词初步了解类似现在这个,一格子+一格子,拼接出来的,一行或者一句,像不像,我们人类思考的时候组装出来的话,并用嘴说出来了呢。
- Elasticsearch快速上手与深度进阶:一站式实战教程
LCG元
前端elasticsearch大数据搜索引擎
目录1.Elasticsearch简介2.安装与启动方式1:Docker快速安装(推荐)方式2:手动安装3.基础操作3.1创建索引3.2插入文档3.3查询文档3.4更新文档3.5删除文档4.高级查询4.1布尔查询4.2范围查询4.3通配符查询5.聚合分析5.1统计年龄分布5.2计算平均值6.自定义分析器6.1创建分词器6.2应用分析器到索引7.集群管理7.1启用集群发现7.2添加节点8.安全配置(
- 0 Token 间间隔 100% GPU 利用率,百度百舸 AIAK 大模型推理引擎极限优化 TPS
百度云大模型gpu
01什么是大模型推理引擎大模型推理引擎是生成式语言模型运转的发动机,是接受客户输入prompt和生成返回response的枢纽,也是拉起异构硬件,将物理电能转换为人类知识的变形金刚。大模型推理引擎的基本工作模式可以概括为,接收包括输入prompt和采样参数的并发请求,分词并且组装成batch输入给引擎,调度GPU执行前向推理,处理计算结果并转为词元返回给用户。和人类大脑处理语言的机制类似,大模型首
- 客服机器人怎么才能精准的回答用户问题?
玩人工智能的辣条哥
AI面试机器人客服机器人
环境:客服机器人问题描述:客服机器人怎么才能精准的回答用户问题?解决方案:客服机器人要精准回答用户问题,需综合技术、数据和用户体验等多方面因素。以下是关键策略和步骤:1.精准理解用户意图自然语言处理(NLP)技术分词与实体识别:提取关键词(如“订单号”“退货”)和实体(如时间、地点)。意图分类:通过机器学习模型(如BERT、Transformer)将问题归类(如“售后”“支付”)。上下文理解记录对
- 自然语言处理(5)—— 中文分词
隐私无忧
人工智能#自然语言处理自然语言处理中文分词人工智能
中文分词的基本原理及实现1.什么是词2.基本原理3.发展趋势:多数场景无需显式分词信息处理的目标是使用计算机能够理解和产生自然语言。而自然语言理解和产生的前提是对语言能够做出全面的解析。汉语词汇是语言中能够独立运用的最小的语言单位,是语言中的原子结构。由于中文缺乏类似英文的空格分隔,分词的准确性直接影响后续任务(如机器翻译、情感分析)的效果。因此,对中文进行分词就显得至关重要。中文分词(Chine
- JAVA代码实现ElasticSearch搜索(入门-进阶)(一):搜索方法、多字段查询、高亮展示
majunssz
elasticsearchelasticsearch
一、搜索方法对比首先存入一条数据count="ilikeeatingandkuing"默认分词器应该将内容分为“i”“like”“eating”“and”“kuing”1.QueryBuilders.matchQuery("count",count);会将搜索词分词,再与目标查询字段进行匹配,若分词中的任意一个词与目标字段匹配上,则可查询到。count="i"可查出count="ili"可查出co
- MiniMind
亚伯拉罕·黄肯
大模型人工智能
数据集分类:tokenizer训练集:这个数据集用于训练分词器(tokenizer),是文本处理中的一个重要步骤。它可以帮助模型更好地理解文本数据的结构。Pretrain数据:这是用于预训练模型的数据集,它可以帮助模型学习语言的基本结构和特征。SFT数据:SFT(SupervisedFine-Tuning)数据集,用于监督式微调,可以提高模型在特定任务上的性能。DPO数据1和DPO数据2:这两个数
- jieba库词频统计_jieba分词器(应用及字典的补充)及文档高频词提取实战
袁圆园建建
jieba库词频统计
jieba分词器是Python中最好的中文分词组件,本文讲解一下jieba分词器及其应用。1、jieba分词器的分词模式jieba分词器提供了三种常用的分词模式1、精确模式:将句子按照最精确的方法进行切分,适合用于进行文本分析;2、全模式:将句子当中所有可以成词的词语都扫描出来,分词速度很快但容易产生歧义;3、搜索引擎模式:在精确模式分词的基础上,将长的句子再次进行切分,提高召回率,适用于搜索引擎
- Mac上传本地项目文件夹到远程Github个人仓库的方法及常见报错处理
Uzw
GitMacgitgithubmac
最近写NER模型的同时学习参悟了一个开源的项目,做了一些Comments改了点分词规则,打算上传到个人Github仓库,上一次本地上传还是用Windows系统,换了Mac发现有一些规则不能用了,好久不用Git都忘光了…上传过程中报错无数,在此一并总结啦!文章目录Prerequisite上传本地文件夹到Github步骤报错问题描述及解决方法1.You‘veaddedanothergitreposit
- LLM(7):文本分词 token 化
CS创新实验室
大模型人工智能深度学习LLM
下面讨论如何将输入文本分割成独立的token,这是为LLM创建嵌入所需的预处理步骤。这些tokens要么是单独的词语,要么是特殊字符,包括标点符号,如图2.4所示。图2.4显示了在LLM背景下文本处理步骤的视图。这里,我们将输入文本分割成独立的token,这些tokens要么是词语,要么是特殊字符,如标点符号。此处用于训练LLM的文本是伊迪斯·沃顿的短篇小说《TheVerdict》,该作品已进入公
- TikTokenizer 开源项目教程
邱纳巧Gillian
TikTokenizer开源项目教程tiktokenizerOnlineplaygroundforOpenAPItokenizers项目地址:https://gitcode.com/gh_mirrors/ti/tiktokenizer项目介绍TikTokenizer是一个基于Python的开源项目,旨在提供一个高效、灵活的文本分词工具。该项目利用先进的算法和数据结构,能够快速准确地对文本进行分词处
- 从关键词到权重:TF-IDF算法解析
多巴胺与内啡肽.
机器学习tf-idf算法机器学习
文章目录前言一、TF-IDF:关键词的“价值”评估师二、TF-IDF的计算:拆解关键词的“价值”三、TF-IDF的应用:从搜索引擎到文本挖掘四、代码实现:从《红楼梦》中提取核心关键词1、分卷处理1.1代码功能1.2代码实现1.2.1、读取文件1.2.2逐行处理1.2.3.关闭文件2、分词与停用词过滤2.1代码功能2.2代码实现2.2.1读取分卷内容构建DataFrame:2.2.2分词与停用词过滤
- Dify知识库构建流程及示例
cqbelt
ai笔记AI应用
总体流程1.数据预处理清洗:去除噪声、特殊字符、标准化格式。分词/标记化:拆分文本为单词或子词单元(如使用Tokenizer)。元数据关联:附加来源、时间戳等信息,支持多维度检索。2.文本分块固定长度分块:按字符或Token数切分,简单高效。语义分块:基于句子边界或主题分割(如NLP模型识别段落主旨)。重叠策略:相邻块间部分重叠,避免上下文断裂。3.向量化(Embedding)嵌入模型:调用预训练
- 基于关键词的文本知识的挖掘系统的设计与实现
赵谨言
论文毕业设计经验分享
标题:基于关键词的文本知识的挖掘系统的设计与实现内容:1.摘要随着信息时代的发展,文本数据呈爆炸式增长,如何从海量文本中高效挖掘有价值的知识成为重要问题。本文旨在设计并实现一个基于关键词的文本知识挖掘系统。方法上,该系统先对输入的文本进行预处理,包括分词、去除停用词等操作,然后基于关键词匹配算法从文本中提取相关信息,最后将提取的知识进行整理和存储。通过实际测试,该系统能够在平均3秒内对一篇5000
- Java面试系列-ElasticSearch面试题20道,文档,索引,搜索,聚合,分词器,集群管理,索引模版,数据备份和恢复,安全机制,集群扩展,实时搜索,索引生命周期,节点发现,批量操作,基本架构
图苑
java面试elasticsearch
文章目录1.Elasticsearch的基本架构是什么?2.Elasticsearch中的Shard和Replica是如何工作的?3.Elasticsearch中的文档是如何存储的?4.Elasticsearch中的索引是如何创建的?5.Elasticsearch中的搜索是如何工作的?6.Elasticsearch中的聚合是如何工作的?7.Elasticsearch中的分词器是如何工作的?8.El
- ES的预置分词器
阿湯哥
elasticsearch服务器linux
Elasticsearch(简称ES)提供了多种预置的分词器(Analyzer),用于对文本进行分词处理。分词器通常由字符过滤器(CharacterFilters)、分词器(Tokenizer)和词元过滤器(TokenFilters)组成。以下是一些常用的预置分词器及其示例:1.StandardAnalyzer(标准分词器)默认分词器,适用于大多数语言。处理步骤:使用标准分词器(StandardT
- MySQL 全文搜索 (FULLTEXT) vs 合并字段模糊查询 (LIKE) 对比
曹天骄
mysql数据库
在MySQL中,使用FULLTEXT索引通常比将多个字段合并到一个新字段(如search_text)中进行模糊查询更快,尤其是在数据量较大时。以下是详细对比:1.FULLTEXT索引的优势专门优化:FULLTEXT索引是为全文搜索设计的,能够高效处理文本匹配。分词搜索:FULLTEXT支持分词搜索(基于空格或特定字符),可以快速定位关键词。性能更好:对于大文本字段或多字段联合搜索,FULLTEXT
- LLM之Colossal-LLaMA-2:源码解读(init_tokenizer.py文件)实现基于源词表的扩展、(init_model.py文件)实现过计算均值扩展模型、(prepare_pretr
一个处女座的程序猿
CaseCodeNLP/LLMs精选(人工智能)-中级ColossalLLaMA-2自然语言处理
LLM之Colossal-LLaMA-2:源码解读(init_tokenizer.py文件)实现基于jsonl文件中读取新词列表(新中文词汇)→for循环去重实现词表的扩展(中文标记的新词汇)→保存新的分词模型、(init_model.py文件)实现过计算均值来扩展模型的嵌入层以适应新的词汇表,然后保存扩展后的模型、(prepare_pretrain_dataset.py文件)将原始数据集进行处理
- LLMs之Colossal-LLaMA-2:源码解读(train.py文件)基于给定数据集实现持续预训练LLaMA-2—解析命令行参数→初始化配置(分布式训练环境colossalai+训练日志+加速插
一个处女座的程序猿
NLP/LLMs精选(人工智能)-中级Colossal-AILLaMA-2大语言模型自然语言处理
LLMs之Colossal-LLaMA-2:源码解读(train.py文件)基于给定数据集实现持续预训练LLaMA-2—解析命令行参数→初始化配置(分布式训练环境colossalai+训练日志+加速插件)→数据预处理(初始化分词器+数据处理器+数据加载器)→模型训练(初始化模型/优化器/学习率调度器/梯度检查点/Flash-Attention/设置数据类型/是否加载预训练模型/从上一次训练点继续训
- python 基于混合式推荐算法的学术论文投稿系统
mosquito_lover1
python知识图谱
基于混合式推荐算法的学术论文投稿系统是一个结合多种推荐技术(如基于内容的推荐、协同过滤、知识图谱等)来为研究者推荐合适期刊或会议投稿的系统。以下是实现该系统的关键步骤和Python代码示例。系统设计思路1.数据收集与预处理:-收集论文数据(标题、摘要、关键词、作者信息等)。-收集期刊/会议数据(领域、主题、影响因子、投稿要求等)。-对文本数据进行预处理(分词、去停用词、向量化等)。2.推荐算法设计
- apache ftpserver-CentOS config
gengzg
apache
<server xmlns="http://mina.apache.org/ftpserver/spring/v1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://mina.apache.o
- 优化MySQL数据库性能的八种方法
AILIKES
sqlmysql
1、选取最适用的字段属性 MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的 性能,我们可以将表中字段的宽度设得尽可能小。例如,在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间,甚至使用VARCHAR这种类型也是多余的,因为CHAR(6)就可以很
- JeeSite 企业信息化快速开发平台
Kai_Ge
JeeSite
JeeSite 企业信息化快速开发平台
平台简介
JeeSite是基于多个优秀的开源项目,高度整合封装而成的高效,高性能,强安全性的开源Java EE快速开发平台。
JeeSite本身是以Spring Framework为核心容器,Spring MVC为模型视图控制器,MyBatis为数据访问层, Apache Shiro为权限授权层,Ehcahe对常用数据进行缓存,Activit为工作流
- 通过Spring Mail Api发送邮件
120153216
邮件main
原文地址:http://www.open-open.com/lib/view/open1346857871615.html
使用Java Mail API来发送邮件也很容易实现,但是最近公司一个同事封装的邮件API实在让我无法接受,于是便打算改用Spring Mail API来发送邮件,顺便记录下这篇文章。 【Spring Mail API】
Spring Mail API都在org.spri
- Pysvn 程序员使用指南
2002wmj
SVN
源文件:http://ju.outofmemory.cn/entry/35762
这是一篇关于pysvn模块的指南.
完整和详细的API请参考 http://pysvn.tigris.org/docs/pysvn_prog_ref.html.
pysvn是操作Subversion版本控制的Python接口模块. 这个API接口可以管理一个工作副本, 查询档案库, 和同步两个.
该
- 在SQLSERVER中查找被阻塞和正在被阻塞的SQL
357029540
SQL Server
SELECT R.session_id AS BlockedSessionID ,
S.session_id AS BlockingSessionID ,
Q1.text AS Block
- Intent 常用的用法备忘
7454103
.netandroidGoogleBlogF#
Intent
应该算是Android中特有的东西。你可以在Intent中指定程序 要执行的动作(比如:view,edit,dial),以及程序执行到该动作时所需要的资料 。都指定好后,只要调用startActivity(),Android系统 会自动寻找最符合你指定要求的应用 程序,并执行该程序。
下面列出几种Intent 的用法
显示网页:
- Spring定时器时间配置
adminjun
spring时间配置定时器
红圈中的值由6个数字组成,中间用空格分隔。第一个数字表示定时任务执行时间的秒,第二个数字表示分钟,第三个数字表示小时,后面三个数字表示日,月,年,< xmlnamespace prefix ="o" ns ="urn:schemas-microsoft-com:office:office" />
测试的时候,由于是每天定时执行,所以后面三个数
- POJ 2421 Constructing Roads 最小生成树
aijuans
最小生成树
来源:http://poj.org/problem?id=2421
题意:还是给你n个点,然后求最小生成树。特殊之处在于有一些点之间已经连上了边。
思路:对于已经有边的点,特殊标记一下,加边的时候把这些边的权值赋值为0即可。这样就可以既保证这些边一定存在,又保证了所求的结果正确。
代码:
#include <iostream>
#include <cstdio>
- 重构笔记——提取方法(Extract Method)
ayaoxinchao
java重构提炼函数局部变量提取方法
提取方法(Extract Method)是最常用的重构手法之一。当看到一个方法过长或者方法很难让人理解其意图的时候,这时候就可以用提取方法这种重构手法。
下面是我学习这个重构手法的笔记:
提取方法看起来好像仅仅是将被提取方法中的一段代码,放到目标方法中。其实,当方法足够复杂的时候,提取方法也会变得复杂。当然,如果提取方法这种重构手法无法进行时,就可能需要选择其他
- 为UILabel添加点击事件
bewithme
UILabel
默认情况下UILabel是不支持点击事件的,网上查了查居然没有一个是完整的答案,现在我提供一个完整的代码。
UILabel *l = [[UILabel alloc] initWithFrame:CGRectMake(60, 0, listV.frame.size.width - 60, listV.frame.size.height)]
- NoSQL数据库之Redis数据库管理(PHP-REDIS实例)
bijian1013
redis数据库NoSQL
一.redis.php
<?php
//实例化
$redis = new Redis();
//连接服务器
$redis->connect("localhost");
//授权
$redis->auth("lamplijie");
//相关操
- SecureCRT使用备注
bingyingao
secureCRT每页行数
SecureCRT日志和卷屏行数设置
一、使用securecrt时,设置自动日志记录功能。
1、在C:\Program Files\SecureCRT\下新建一个文件夹(也就是你的CRT可执行文件的路径),命名为Logs;
2、点击Options -> Global Options -> Default Session -> Edite Default Sett
- 【Scala九】Scala核心三:泛型
bit1129
scala
泛型类
package spark.examples.scala.generics
class GenericClass[K, V](val k: K, val v: V) {
def print() {
println(k + "," + v)
}
}
object GenericClass {
def main(args: Arr
- 素数与音乐
bookjovi
素数数学haskell
由于一直在看haskell,不可避免的接触到了很多数学知识,其中数论最多,如素数,斐波那契数列等,很多在学生时代无法理解的数学现在似乎也能领悟到那么一点。
闲暇之余,从图书馆找了<<The music of primes>>和<<世界数学通史>>读了几遍。其中素数的音乐这本书与软件界熟知的&l
- Java-Collections Framework学习与总结-IdentityHashMap
BrokenDreams
Collections
这篇总结一下java.util.IdentityHashMap。从类名上可以猜到,这个类本质应该还是一个散列表,只是前面有Identity修饰,是一种特殊的HashMap。
简单的说,IdentityHashMap和HashM
- 读《研磨设计模式》-代码笔记-享元模式-Flyweight
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java
- PS人像润饰&调色教程集锦
cherishLC
PS
1、仿制图章沿轮廓润饰——柔化图像,凸显轮廓
http://www.howzhi.com/course/retouching/
新建一个透明图层,使用仿制图章不断Alt+鼠标左键选点,设置透明度为21%,大小为修饰区域的1/3左右(比如胳膊宽度的1/3),再沿纹理方向(比如胳膊方向)进行修饰。
所有修饰完成后,对该润饰图层添加噪声,噪声大小应该和
- 更新多个字段的UPDATE语句
crabdave
update
更新多个字段的UPDATE语句
update tableA a
set (a.v1, a.v2, a.v3, a.v4) = --使用括号确定更新的字段范围
- hive实例讲解实现in和not in子句
daizj
hivenot inin
本文转自:http://www.cnblogs.com/ggjucheng/archive/2013/01/03/2842855.html
当前hive不支持 in或not in 中包含查询子句的语法,所以只能通过left join实现。
假设有一个登陆表login(当天登陆记录,只有一个uid),和一个用户注册表regusers(当天注册用户,字段只有一个uid),这两个表都包含
- 一道24点的10+种非人类解法(2,3,10,10)
dsjt
算法
这是人类算24点的方法?!!!
事件缘由:今天晚上突然看到一条24点状态,当时惊为天人,这NM叫人啊?以下是那条状态
朱明西 : 24点,算2 3 10 10,我LX炮狗等面对四张牌痛不欲生,结果跑跑同学扫了一眼说,算出来了,2的10次方减10的3次方。。我草这是人类的算24点啊。。
然后么。。。我就在深夜很得瑟的问室友求室友算
刚出完题,文哥的暴走之旅开始了
5秒后
- 关于YII的菜单插件 CMenu和面包末breadcrumbs路径管理插件的一些使用问题
dcj3sjt126com
yiiframework
在使用 YIi的路径管理工具时,发现了一个问题。 <?php
- 对象与关系之间的矛盾:“阻抗失配”效应[转]
come_for_dream
对象
概述
“阻抗失配”这一词组通常用来描述面向对象应用向传统的关系数据库(RDBMS)存放数据时所遇到的数据表述不一致问题。C++程序员已经被这个问题困扰了好多年,而现在的Java程序员和其它面向对象开发人员也对这个问题深感头痛。
“阻抗失配”产生的原因是因为对象模型与关系模型之间缺乏固有的亲合力。“阻抗失配”所带来的问题包括:类的层次关系必须绑定为关系模式(将对象
- 学习编程那点事
gcq511120594
编程互联网
一年前的夏天,我还在纠结要不要改行,要不要去学php?能学到真本事吗?改行能成功吗?太多的问题,我终于不顾一切,下定决心,辞去了工作,来到传说中的帝都。老师给的乘车方式还算有效,很顺利的就到了学校,赶巧了,正好学校搬到了新校区。先安顿了下来,过了个轻松的周末,第一次到帝都,逛逛吧!
接下来的周一,是我噩梦的开始,学习内容对我这个零基础的人来说,除了勉强完成老师布置的作业外,我已经没有时间和精力去
- Reverse Linked List II
hcx2013
list
Reverse a linked list from position m to n. Do it in-place and in one-pass.
For example:Given 1->2->3->4->5->NULL, m = 2 and n = 4,
return
- Spring4.1新特性——页面自动化测试框架Spring MVC Test HtmlUnit简介
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Hadoop集群工具distcp
liyonghui160com
1. 环境描述
两个集群:rock 和 stone
rock无kerberos权限认证,stone有要求认证。
1. 从rock复制到stone,采用hdfs
Hadoop distcp -i hdfs://rock-nn:8020/user/cxz/input hdfs://stone-nn:8020/user/cxz/运行在rock端,即源端问题:报版本
- 一个备份MySQL数据库的简单Shell脚本
pda158
mysql脚本
主脚本(用于备份mysql数据库): 该Shell脚本可以自动备份
数据库。只要复制粘贴本脚本到文本编辑器中,输入数据库用户名、密码以及数据库名即可。我备份数据库使用的是mysqlump 命令。后面会对每行脚本命令进行说明。
1. 分别建立目录“backup”和“oldbackup” #mkdir /backup #mkdir /oldbackup
- 300个涵盖IT各方面的免费资源(中)——设计与编码篇
shoothao
IT资源图标库图片库色彩板字体
A. 免费的设计资源
Freebbble:来自于Dribbble的免费的高质量作品。
Dribbble:Dribbble上“免费”的搜索结果——这是巨大的宝藏。
Graphic Burger:每个像素点都做得很细的绝佳的设计资源。
Pixel Buddha:免费和优质资源的专业社区。
Premium Pixels:为那些有创意的人提供免费的素材。
- thrift总结 - 跨语言服务开发
uule
thrift
官网
官网JAVA例子
thrift入门介绍
IBM-Apache Thrift - 可伸缩的跨语言服务开发框架
Thrift入门及Java实例演示
thrift的使用介绍
RPC
POM:
<dependency>
<groupId>org.apache.thrift</groupId>