Horizontally Visible Segments
Description
There is a number of disjoint vertical line segments in the plane. We say that two segments are horizontally visible if they can be connected by a horizontal line segment that does not have any common points with other vertical segments. Three different vertical segments are said to form a triangle of segments if each two of them are horizontally visible. How many triangles can be found in a given set of vertical segments?
Task Write a program which for each data set: reads the description of a set of vertical segments, computes the number of triangles in this set, writes the result. Input
The first line of the input contains exactly one positive integer d equal to the number of data sets, 1 <= d <= 20. The data sets follow.
The first line of each data set contains exactly one integer n, 1 <= n <= 8 000, equal to the number of vertical line segments. Each of the following n lines consists of exactly 3 nonnegative integers separated by single spaces: yi', yi'', xi - y-coordinate of the beginning of a segment, y-coordinate of its end and its x-coordinate, respectively. The coordinates satisfy 0 <= yi' < yi'' <= 8 000, 0 <= xi <= 8 000. The segments are disjoint. Output
The output should consist of exactly d lines, one line for each data set. Line i should contain exactly one integer equal to the number of triangles in the i-th data set.
Sample Input 1 5 0 4 4 0 3 1 3 4 2 0 2 2 0 2 3 Sample Output 1 Source
Central Europe 2001
|
题目:http://poj.org/problem?id=1436
题意:给你n条垂直的线段,这些线段不会相交,如果两条线段直接存在一条水平线可以连接到这两条线段,并且不与其他线段相交,我们说着两条线段可见,求一共有多少对三条线段两两可见。。。
分析:这题当然可以用从上往下的扫描线,加上个排序什么的,来解决,而这题的线段树写法,依旧是模拟区间的覆盖,而这题要求覆盖的关系,一开始我以为在更新线段树的时候就可以判断覆盖关系,然后直接覆盖,最后在写一个遍历整棵树,找出所有覆盖关系,然而这样是错的,因为可能之前那个区间还没找到它盖上的区间就被替换掉了。。。
而正确的做法就是每次先寻找这个区间覆盖了那些线段,然后把它加到线段树里面,这样就避免了之前的错误。。。现在就得到了线段是否可见的关系图,然后暴力枚举三条线段。。。。貌似深搜没法做的样子
代码:
#include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 using namespace std; const int mm=16666; struct seg { int l,r,x; }g[mm]; int head[mm],flag[mm],ver[mm<<8],next[mm<<8]; int dly[mm<<2]; int edge,ans; bool cmp(seg a,seg b) { return a.x<b.x; } void prepare() { edge=0; memset(head,-1,sizeof(head)); memset(dly,0,sizeof(dly)); memset(flag,0,sizeof(flag)); } void addedge(int u,int v) { ver[edge]=v,next[edge]=head[u],head[u]=edge++; } void pushdown(int rt) { dly[rt<<1]=dly[rt<<1|1]=dly[rt]; dly[rt]=0; } void updata(int L,int R,int id,int l,int r,int rt) { if(L<=l&&R>=r) { dly[rt]=id; return; } if(dly[rt])pushdown(rt); int m=(l+r)>>1; if(L<=m)updata(L,R,id,lson); if(R>m)updata(L,R,id,rson); } void query(int L,int R,int id,int l,int r,int rt) { if(dly[rt]) { if(flag[dly[rt]]!=id) addedge(dly[rt],flag[dly[rt]]=id); return; } if(l==r)return; int m=(l+r)>>1; if(L<=m)query(L,R,id,lson); if(R>m)query(L,R,id,rson); } int main() { int i,j,k,v,n,cs; scanf("%d",&cs); while(cs--) { scanf("%d",&n); for(i=0;i<n;++i) { scanf("%d%d%d",&g[i].l,&g[i].r,&g[i].x); g[i].l<<=1,g[i].r<<=1; } sort(g,g+n,cmp); prepare(); for(i=0;i<n;++i) query(g[i].l,g[i].r,i+1,0,mm,1), updata(g[i].l,g[i].r,i+1,0,mm,1); ans=0; for(i=1;i<=n;++i) for(j=head[i];j>=0;j=next[j]) for(k=next[j];k>=0;k=next[k]) { for(v=head[ver[j]];v>=0;v=next[v]) if(ver[v]==ver[k])break; if(v<0) for(v=head[ver[k]];v>=0;v=next[v]) if(ver[v]==ver[j])break; if(v>=0)++ans; } printf("%d\n",ans); } return 0; }