POJ_2942_Knights of the Round Table(点的双连通分量+二分图判定)

Knights of the Round Table
Time Limit: 7000MS   Memory Limit: 65536K
Total Submissions: 10908   Accepted: 3585

Description

Being a knight is a very attractive career: searching for the Holy Grail, saving damsels in distress, and drinking with the other knights are fun things to do. Therefore, it is not very surprising that in recent years the kingdom of King Arthur has experienced an unprecedented increase in the number of knights. There are so many knights now, that it is very rare that every Knight of the Round Table can come at the same time to Camelot and sit around the round table; usually only a small group of the knights isthere, while the rest are busy doing heroic deeds around the country.

Knights can easily get over-excited during discussions-especially after a couple of drinks. After some unfortunate accidents, King Arthur asked the famous wizard Merlin to make sure that in the future no fights break out between the knights. After studying the problem carefully, Merlin realized that the fights can only be prevented if the knights are seated according to the following two rules:
  • The knights should be seated such that two knights who hate each other should not be neighbors at the table. (Merlin has a list that says who hates whom.) The knights are sitting around a roundtable, thus every knight has exactly two neighbors.
  • An odd number of knights should sit around the table. This ensures that if the knights cannot agree on something, then they can settle the issue by voting. (If the number of knights is even, then itcan happen that ``yes" and ``no" have the same number of votes, and the argument goes on.)
Merlin will let the knights sit down only if these two rules are satisfied, otherwise he cancels the meeting. (If only one knight shows up, then the meeting is canceled as well, as one person cannot sit around a table.) Merlin realized that this means that there can be knights who cannot be part of any seating arrangements that respect these rules, and these knights will never be able to sit at the Round Table (one such case is if a knight hates every other knight, but there are many other possible reasons). If a knight cannot sit at the Round Table, then he cannot be a member of the Knights of the Round Table and must be expelled from the order. These knights have to be transferred to a less-prestigious order, such as the Knights of the Square Table, the Knights of the Octagonal Table, or the Knights of the Banana-Shaped Table. To help Merlin, you have to write a program that will determine the number of knights that must be expelled.

Input

The input contains several blocks of test cases. Each case begins with a line containing two integers 1 ≤ n ≤ 1000 and 1 ≤ m ≤ 1000000 . The number n is the number of knights. The next m lines describe which knight hates which knight. Each of these m lines contains two integers k1 and k2 , which means that knight number k1 and knight number k2 hate each other (the numbers k1 and k2 are between 1 and n ).

The input is terminated by a block with n = m = 0 .

Output

For each test case you have to output a single integer on a separate line: the number of knights that have to be expelled.

Sample Input

5 5
1 4
1 5
2 5
3 4
4 5
0 0

Sample Output

2

Hint

Huge input file, 'scanf' recommended to avoid TLE.

题意:一些骑士,他们之间有互相讨厌的关系,讨厌的两人不能相邻坐,每次开会都要有奇数个骑士坐在圆桌,永远不能坐进圆桌的骑士将会被剔除,问剔除的骑士有多少个。

分析:此题完全是按照刘汝佳的大白书《算法竞赛入门经典——训练指南》写的。简单讲讲做法。首先,将互不讨厌的关系都用边连接起来,建立无向图G。题目就转化为求不在任意一个“简单奇圈”上的节点个数。一个简单圈上的所有节点必然属于同一个双连通分量,而由于双连通分量中如果存在奇环,那么它的每一个点都会在奇环上,那么判断该双连通分量如果存在奇环,则该连通分量上的点都不要删掉。而二分图是不存在奇环的,所以判断是否存在奇环,只需判断该连通分量是否为二分图。要注意的是,由于一个点可能属于多个双连通分量,所以处理的时候不能直接加双连通分量点的个数,而是每次找到一个存在奇环的双连通分量时,先标记不要剔除的点,最后再统计需要剔除的点。

点的双连通分量用tarjan求,判断二分图用交叉染色法判定。

题目链接:http://poj.org/problem?id=2942

代码清单:

#include<set>
#include<map>
#include<cmath>
#include<queue>
#include<stack>
#include<ctime>
#include<cctype>
#include<string>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;

typedef long long ll;
typedef unsigned int uint;
typedef unsigned long long ull;

const int maxn = 2000 + 5;
const int maxv = 4000000 + 5;

struct node{ int v,next; }graph[maxv];
struct Edge{
    int u,v;
    Edge(){}
    Edge(int u,int v){
        this -> u = u;
        this -> v = v;
    }
};

int n,m,a,b;
bool tmap[maxn][maxn];

int dfn[maxn];
int low[maxn];
int belong[maxn];
int head[maxn];
int num,idx,sccno;
stack<Edge>sta;
vector<int>bcc;

int color[maxn];
bool odd[maxn];

void init(){
    memset(dfn,0,sizeof(dfn));
    memset(low,0,sizeof(low));
    memset(head,-1,sizeof(head));
    memset(tmap,false,sizeof(tmap));
    memset(odd,false,sizeof(odd));
    while(!sta.empty()) sta.pop();
    idx=0; sccno=0; num=0;
}

void add(int u,int v){
    graph[num].v=v;
    graph[num].next=head[u];
    head[u]=num++;
}

void input(){
    for(int i=1;i<=m;i++){
        scanf("%d%d",&a,&b);
        tmap[a][b]=tmap[b][a]=true;
    }
}

void get_graph(){
    for(int i=1;i<=n;i++)
        for(int j=i+1;j<=n;j++)
        if(!tmap[i][j]){ add(i,j);add(j,i); }
}

bool bipartite(int u,int colors){
    color[u]=colors;
    for(int i=head[u];i!=-1;i=graph[i].next){
        int v=graph[i].v;
        if(!belong[v]) continue;
        if(color[v]==color[u]) return false;
        if(color[v]==0){
            if(!bipartite(v,3-colors)) return false;
        }
    }return true;
}

void tarjan(int u,int father){
    low[u]=dfn[u]=++idx;
    for(int i=head[u];i!=-1;i=graph[i].next){
        int v=graph[i].v;
        if(v==father) continue;
        if(!dfn[v]){ //v未标记,则(u,v)为树边
            sta.push(Edge(u,v)); //边入栈
            tarjan(v,u);
            low[u]=min(low[u],low[v]);
            if(low[v]>=dfn[u]){ //子节点不能到比u更早的节点,则u是割点
                sccno++;
                memset(belong,0,sizeof(belong));
                memset(color,0,sizeof(color));
                bcc.clear();
                while(!sta.empty()){ //把这个双连通分量的点取出来
                    Edge e=sta.top();
                    sta.pop();
                    bcc.push_back(e.u);
                    belong[e.u]=sccno;
                    bcc.push_back(e.v);
                    belong[e.v]=sccno;
                    if(e.u==u&&e.v==v) break;
                }
                if(!bipartite(bcc[0],1)){ //如果不是二分图
                    for(int j=0;j<bcc.size();j++) odd[bcc[j]]=true;
                }
            }
        }
        else if(dfn[v]<dfn[u]){ //回边
            sta.push(Edge(u,v)); //边入栈
            low[u]=min(low[u],dfn[v]);
        }
    }
}

void find_scc(){
    for(int i=1;i<=n;i++){
        if(!dfn[i]) tarjan(i,-1);
    }
}


int get_ans(){
    int ans=n;
    get_graph();
    find_scc();
    for(int i=1;i<=n;i++)
        if(odd[i]) ans--;
    return ans;
}

void solve(){
    printf("%d\n",get_ans());
}

int main(){
    while(scanf("%d%d",&n,&m)!=EOF&&n&&m){
        init();
        input();
        solve();
    }
    return 0;
}



你可能感兴趣的:(Algorithm,Graph,ACM,poj,Tarjan)