- 经典算法思想总结
2301_80148369
算法
贪心算法算法思想贪心的本质是选择每一阶段的局部最优,从而达到全局最优。一般解题步骤将问题分解为若干个子问题找出适合的贪心策略求解每一个子问题的最优解将局部最优解堆叠成全局最优解LeetCode455.分发饼干:455.分发饼干-力扣(LeetCode)121.买卖股票的最佳时机:121.买卖股票的最佳时机-力扣(LeetCode)122.买卖股票的最佳时机II:122.买卖股票的最佳时机II-力扣
- 网关类设备技术演进思路
看兵马俑的程序员
网闸安全
1.新技术采纳5G和物联网技术:支持更快的数据传输和更多连接。人工智能(AI)和机器学习:用于数据分析、用户行为预测和自动化决策。边缘计算:在设备端进行数据处理,减少对云服务的依赖,提高响应速度。区块链技术:用于确保数据安全和网络安全。2.安全性和隐私数据加密和隐私保护:采用最新的加密技术保护数据传输和存储。身份验证和访问控制:强化用户身份验证,确保只有授权用户可以访问网关。固件和软件安全更新:支
- 国产替代 | 星环科技Sophon替代SAS,助力大型国有银行智能化营销
星环科技
数据库架构数据挖掘
分布式架构的|国产智能分析工具在银行交易中,20%的头部优质客户会给银行贡献80%的利润,而赢得一个新客户的成本是保留一个老客户的5至6倍。某大型国有银行在面临此类数据挖掘的业务时,使用的是SAS产品。由于SAS是集中式的,对单台服务器要求太高,算力无法支撑需求,且无法支持可视化的机器学习,对于业务人员来说使用门槛过高。在经过产品选型后,决定采用星环科技的智能分析工具Sophon替换原有SAS,用
- PyTorch知识点总结之一
Rain松
机器学习与深度学习pytorch深度学习python
PyTorch知识点总结之一1.什么是PyTorch?它有什么特点和优势?PyTorch是一个基于Python的科学计算库,它是用于机器学习和深度学习的框架之一。它由Facebook的人工智能研究团队开发和维护,是一个开源的软件包,可以帮助开发者构建各种深度学习模型。PyTorch的特点和优势如下:易于使用和学习:PyTorch采用了类似于Python的语法,使得它容易上手和学习。它还提供了丰富的
- 使用 ML.NET 开发工业预测系统:从数据到智能决策
威哥说编程
c#AI编程人工智能microsoft
在现代工业领域,随着生产设备和环境传感器的大量部署,生成了海量的实时数据。这些数据不仅可以帮助我们监控设备的健康状况,还能够通过智能分析实现预测性维护、故障检测和生产效率优化等目标。而机器学习技术,尤其是ML.NET,提供了一种高效、灵活的方式来挖掘这些数据背后的潜在价值。本文将带领大家通过使用ML.NET来开发一个简单的工业预测系统,帮助企业提高生产效率,降低故障风险。1.机器学习在工业中的应用
- 初学者推荐学习AI的路径
ProgramHan
学习人工智能
学习人工智能的路径可以分为基础知识、编程技能、机器学习、深度学习、数据处理与可视化、自然语言处理(NLP)、计算机视觉(CV)、强化学习、实践项目和持续学习几个阶段。以下是一个简要的路径:1️⃣基础知识数学基础(线性代数、微积分、概率统计)编程基础(Python/R等语言)算法与数据结构2️⃣机器学习基础理解监督学习(如回归、分类)、无监督学习(如聚类、PCA)掌握机器学习库(如scikit-le
- 机器学习实战:从理论到实践
静默.\\
机器学习人工智能
随着人工智能技术的迅猛发展,机器学习作为其核心部分,已经广泛应用于各个领域。它不仅在科技公司中扮演着关键角色,在医疗、金融、零售等行业也展现了巨大的潜力。然而,对于许多初学者来说,如何将理论知识转化为实际操作是一个挑战。本文旨在通过一个具体的案例——预测房价,来介绍机器学习的基本流程和具体操作步骤。我们将使用Python编程语言及其相关的科学计算库,如NumPy、Pandas、Scikit-Lea
- 开源模型应用落地-Qwen1.5-MoE-1/3的激活参数量达到7B模型的性能
开源技术探险家
开源模型-实际应用落地#深度学习语言模型自然语言处理
一、前言2024.03.28阿里推出Qwen系列的首个MoE模型,Qwen1.5-MoE-A2.7B。它仅拥有27亿个激活参数,但其性能却能与当前最先进的70亿参数模型,如Mistral7B和Qwen1.5-7B相媲美。但是目前只有HFtransformers和vLLM支持该模型。二、术语介绍2.1.混合专家(MoE)架构是一种机器学习模型的结构设计,它将一个复杂的任务分解成多个相对简单的子任务,
- 时序大模型:技术需求、现有成果及主流模型、模型架构、数据处理方式、优势、缺点及未来展望
xl.liu
架构人工智能
时序大模型:技术需求、现有成果及主流模型、模型架构、数据处理方式、优势、缺点及未来展望时序大模型如何保证数据的完整性和准确性时序大模型的性能高度依赖于数据的质量和完整性。为了确保模型的预测和分析结果准确可靠,需要采取一系列措施来保证数据的完整性和准确性。数据清洗:去除异常值:通过统计方法或机器学习算法检测并去除异常值,确保数据的合理性。填补缺失值:使用插值方法、均值填充、中位数填充或基于模型的预测
- 机器学习数学基础:36.φ相关系数分析
@心都
机器学习人工智能
用φ相关系数分析性别与心理测验态度关系的教程一、学习目标学会使用φ相关系数分析两个二分变量(如性别男/女、对心理测验态度肯定/否定)之间的关系,并通过卡方检验判断结果是否具有统计学意义。二、数据准备假设我们想研究青年大学生的性别和对心理测验的态度之间的关系,收集到如下2×22×22×2列联表数据(调查了170170170人):肯定否定合计男生222222888888110110110女生18181
- 机器学习数学基础:37.偏相关分析
@心都
机器学习人工智能
偏相关分析教程一、偏相关分析是什么在很多复杂的系统中,比如地理系统,会有多个要素相互影响。偏相关分析就是在这样多要素构成的系统里,不考虑其他要素的干扰,专门去研究两个要素之间关系紧密程度的一种方法。用来衡量这种紧密程度的数值,叫做偏相关系数。举个简单例子,在研究一个地区的房价时,房价会受到很多因素影响,像地段、房屋面积、周边配套设施等。如果我们想知道单纯的房屋面积和房价之间的关系,就可以用偏相关分
- 机器学习数学基础:22.对称矩阵的对角化
@心都
机器学习矩阵概率论
一、核心概念详解(一)内积定义与公式:在nnn维向量空间中,对于向量x⃗=(x1,x2,⋯ ,xn)\vec{x}\=(x_1,x_2,\cdots,x_n)x=(x1,x2,⋯,xn)和y⃗=(y1,y2,⋯ ,yn)\vec{y}\=(y_1,y_2,\cdots,y_n)y=(y1,y2,⋯,yn),内积记作(x⃗,y⃗)(\vec{x},\vec{y})(x,y),其计算公式为(x⃗,y⃗
- 机器学习数学基础:34.点二列
@心都
机器学习概率论人工智能
点二列相关教程一、点二列相关的定义点二列相关是一种统计方法,用于衡量两个变量之间的相关程度。在这种相关分析中,一个变量是正态连续性变量,取值可以是连续的数值,比如身高、体重、考试分数等;另一个是真正的二分名义变量,其两个类别是天然存在、相互独立的,不能再细分,像性别(男/女)、是否吸烟(是/否)、抛硬币的结果(正面/反面)等。二、适用场景点二列相关常用于研究天然二分变量与连续变量之间的关系。例如在
- 免费 MLOps 课程:学习机器学习运维的完整流程
真智AI
学习机器学习运维免费教程
掌握MLOps:训练和跟踪实验、构建ML流水线、模型部署、生产环境监控,并从DevOps采用最佳实践。免费MLOps课程概览(DataTalks.Club提供)课程平台:DataTalks.Club适合人群:有一定Python和ML经验的开发者重点内容:模型训练、实验跟踪、流水线构建、模型部署、监控和DevOps最佳实践目录什么是MLOps?为什么需要MLOps?MLOpsZoomcamp课程介绍
- 机器学习的三个步骤-ChatGPT4o作答
部分分式
机器学习人工智能
机器学习的三个步骤分别是:设置范围、设置标准、达成目标。这三个步骤是任何机器学习项目的基础框架,它们为模型的选择、优化和评估提供了清晰的指导。让我们深入探讨这三个步骤的具体内容。1.设置范围(DefiningtheScope)设置范围是机器学习项目中的第一步,它涉及到明确问题的类型和目标,选择合适的算法和模型结构。这个阶段的目标是确定适合当前任务的机器学习方法。关键内容:问题类型:监督学习(Sup
- AGI框架探索
另一只又死又活的猫
开发十年,就只剩下这套Java开发体系了>>>随着对机器学习领域的深入探索,我渐渐迷上了AGI通用人工智能。所以,闲暇时就对AGI框架进行了深入的了解,看看哪些AGI框架与个人的理念相符,方便做进一步的研究之用。朋友给我分享了一篇收集和汇总AGI技术的文章,正好,我就以此为索引,对里面的每一个框架进行了考察:50个杀手级人工智能项目:https://mp.weixin.qq.com/s/qafBW
- 逻辑回归分类python实例_Python逻辑回归原理及实际案例应用
Zcc四月
逻辑回归分类python实例
前言目录1.逻辑回归2.优缺点及优化问题3.实际案例应用4.总结正文在前面所介绍的线性回归,岭回归和Lasso回归这三种回归模型中,其输出变量均为连续型,比如常见的线性回归模型为:其写成矩阵形式为:现在这里的输出为连续型变量,但是实际中会有'输出为离散型变量'这样的需求,比如给定特征预测是否离职(1表示离职,0表示不离职).显然这时不能直接使用线性回归模型,而逻辑回归就派上用场了.1.逻辑回归引用
- PYTHON机器学习小项目教程:预测鸢尾花种类
jackispy
python机器学习人工智能
我们将使用经典的鸢尾花数据集来构建一个分类模型,该数据集包含150个样本,每个样本有四个特征:花萼长度、花萼宽度、花瓣长度和花瓣宽度。目标是根据这些特征预测鸢尾花的种类(山鸢尾、变色鸢尾或维吉尼亚鸢尾)。一、环境配置首先,确保你已经安装了必要的库。如:pandas、numpy等,命令如下所示pipinstallnumpypandasscikit-learnmatplotlib[-i镜像源网站]二、
- 基于KNN的鸢尾花分类预测模型
溪海莘
分类数据挖掘人工智能
基于KNN的鸢尾花分类预测模型.让机器实现对鸢尾花的分类分析,它会怎么做呢?我们首先列举出可能需要的要素:数据,模型和算法,效果评估。机器学习,它也是需要对自己的学习效果进行评估,因为它需要根据结果来调整参数。大多数情况需要人来介入这个过程,人们需要根据自身的经验来选取一些合适的参数,但是“爱偷懒”的数据科学家同时也提出一些自动化的程序来实现这一步骤。一、鸢尾花数据集1.1利用sklearn库导入
- Topaz Photo AI 人工智能图像处理 降噪
甜于酸
图像处理人工智能图像处理
介绍TopazPhotoAIMac版是一款人工智能图像处理软件,利用先进的AI技术为图像作品带来前所未有的提升。核心功能在于其智能降噪与细节增强能力,能够自动识别并去除照片中的噪点,同时保留并增强图像的细节和纹理,使照片更加清晰、细腻。具备图像分辨率提升特性,利用机器学习技术,分析并重建图像的细节,从而保持图像质量同时,显著提高图像的分辨率。提供自动调整色彩分布与对比度优化功能,使照片的色彩更加饱
- 探索Omniglot:一个无尽的手写字符集合
宋溪普Gale
探索Omniglot:一个无尽的手写字符集合omniglotomniglot-一个包含大量不同语言手写字符图像的数据集,用于机器学习模型的训练和评估。项目地址:https://gitcode.com/gh_mirrors/om/omniglot项目简介Omniglot是由BrendenLake等人创建的一个开源项目,其目标是提供一个广泛的手写字符集,用于研究人类和机器的学习能力。这个项目不仅仅是一
- 【DeepSeek零基础入门】从零开始:如何训练自己的AI模型
Evaporator Core
DeepSeek进阶开发与应用#DeepSeek快速入门deepseek应用开发实例deepseek
从零开始:如何训练自己的AI模型在人工智能的世界里,训练一个属于自己的AI模型,就像是在培养一个新生儿。你需要耐心、技巧,以及对数据的深刻理解。今天,我们将一起探索如何从零开始,训练一个AI模型,并通过一个具体的案例来加深理解。第一步:明确目标与选择框架在开始之前,首先要明确你的AI模型需要解决什么问题。是图像识别、自然语言处理,还是预测分析?明确目标后,选择一个合适的机器学习框架至关重要。Ten
- 【OpenCV】OpenCV 中各模块及其算子的详细分类
de之梦-御风
OpenCV4Net.net技术opencv分类人工智能
OpenCV的最新版本包含了500多个算子,这些算子覆盖了图像处理、计算机视觉、机器学习、深度学习、视频分析等多个领域。为了方便使用,OpenCV将这些算子分为多个模块,每个模块承担特定的功能。以下是OpenCV中各模块及其算子的详细分类:1.核心模块(Core)功能:提供基础数据结构(如Mat)、数学运算、内存管理、输入输出等基本操作。常用算子:数学运算:cv::add,cv::subtract
- DeepSeek 深度赋能客服岗:效率与洞察的双重飞跃
AI_DL_CODE
人工智能深度学习DeepSeek工作助理
摘要:本文聚焦于DeepSeek在客服服务岗的应用。它能凭借自然语言处理技术,快速理解客户咨询,精准提供解答方案;自动生成标准化、个性化的回复话术,大幅提升客服效率;利用机器学习对客户反馈进行深度分析,挖掘潜在需求与市场趋势。通过电商、互联网服务等行业案例,展现其实际成效。使用时需注意数据质量与隐私保护,促进与人工客服协同配合,持续优化学习。DeepSeek为客服工作带来变革,助力企业提升服务质量
- 深度学习-2:tensorflow 入门以及简单的线性拟合
wangs0622
深度学习tensorflow深度学习tensorflow线性回归
摘要:介绍tensorflow入门使用tensorflow实现简单的线性回归tensorflow入门知识参考:https://www.tensorflow.org/get_started/get_started载入tensorflow的标准语句:importtensorflowastftensortensor物理上的翻译是张量。tensor是tensorflow的基本核心数据单元,tensor可以
- 解锁机器学习核心算法|朴素贝叶斯:分类的智慧法则
紫雾凌寒
AI炼金厂#机器学习算法机器学习算法分类朴素贝叶斯python深度学习人工智能
一、引言在机器学习的庞大算法体系中,有十种算法被广泛认为是最具代表性和实用性的,它们犹如机器学习领域的“十大神器”,各自发挥着独特的作用。这十大算法包括线性回归、逻辑回归、决策树、随机森林、K-近邻算法、K-平均算法、支持向量机、朴素贝叶斯算法、主成分分析(PCA)、神经网络。它们涵盖了回归、分类、聚类、降维等多个机器学习任务领域,是众多机器学习应用的基础和核心。而在这众多的算法中,朴素贝叶斯算法
- 解锁机器学习核心算法 | 线性回归:机器学习的基石
紫雾凌寒
AI炼金厂#机器学习算法算法机器学习线性回归人工智能深度学习aipython
在机器学习的众多算法中,线性回归宛如一块基石,看似质朴无华,却稳稳支撑起诸多复杂模型的架构。它是我们初涉机器学习领域时便会邂逅的算法之一,其原理与应用广泛渗透于各个领域。无论是预测房价走势、剖析股票市场波动,还是钻研生物医学数据、优化工业生产流程,线性回归皆能大显身手。本质上,线性回归是一种用于构建变量间线性关系的统计模型。它试图寻觅一条最佳拟合直线(或超平面),以使预测值与实际观测值之间的误差降
- AI环境初识
网络飞鸥
AI人工智能
在搭建AI环境时,当前流行的技术涉及多个方面,包括开发框架、深度学习库、硬件支持以及具体的应用技术等。以下是一些主要的技术趋势和流行技术:一、开发框架与深度学习库TensorFlow:由谷歌开发的一个开源机器学习库,广泛用于研究和生产环境。它提供了强大的张量计算能力和灵活的架构,支持广泛的机器学习和深度学习算法。PyTorch:由Facebook推出,也是一个广受欢迎的开源机器学习库。PyTorc
- 杰和推出面向人工智能应用的AI服务器
weixin_34211761
在这个数据爆炸的年代,我们获取数据的难度大大降低,但要获取数据的价值仅依靠简单的数据分析是不可行的。如果将大数据看作一个产业,那么数据深挖(挖掘)就是其中一项核心技术,数据深挖(挖掘)通常与计算机科学有关,如数据统计、数据检索、分析处理、机器学习等技术,而这些恰好是人工智能技术的优势。人工智能一直都是备受关注的热门领域,更是被认为是第四次工业革命。随着技术的不断开发及深入优化,人工智能以迅雷不及掩
- 机器学习数学通关指南——微积分基本概念
Shockang
机器学习数学通关指南机器学习微积分数学
前言本文隶属于专栏《机器学习数学通关指南》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!本专栏目录结构和参考文献请见《机器学习数学通关指南》正文函数一、函数的定义与本质映射关系:函数是实数集到实数集的映射(或更一般地,非空数集到数集的映射)。规范形式:f:D→Rf:D\to\mathbb{R}f:D→R,其中D⊆RD\subseteq\mathbb{R}D⊆R为定义域
- html
周华华
html
js
1,数组的排列
var arr=[1,4,234,43,52,];
for(var x=0;x<arr.length;x++){
for(var y=x-1;y<arr.length;y++){
if(arr[x]<arr[y]){
&
- 【Struts2 四】Struts2拦截器
bit1129
struts2拦截器
Struts2框架是基于拦截器实现的,可以对某个Action进行拦截,然后某些逻辑处理,拦截器相当于AOP里面的环绕通知,即在Action方法的执行之前和之后根据需要添加相应的逻辑。事实上,即使struts.xml没有任何关于拦截器的配置,Struts2也会为我们添加一组默认的拦截器,最常见的是,请求参数自动绑定到Action对应的字段上。
Struts2中自定义拦截器的步骤是:
- make:cc 命令未找到解决方法
daizj
linux命令未知make cc
安装rz sz程序时,报下面错误:
[root@slave2 src]# make posix
cc -O -DPOSIX -DMD=2 rz.c -o rz
make: cc:命令未找到
make: *** [posix] 错误 127
系统:centos 6.6
环境:虚拟机
错误原因:系统未安装gcc,这个是由于在安
- Oracle之Job应用
周凡杨
oracle job
最近写服务,服务上线后,需要写一个定时执行的SQL脚本,清理并更新数据库表里的数据,应用到了Oracle 的 Job的相关知识。在此总结一下。
一:查看相关job信息
1、相关视图
dba_jobs
all_jobs
user_jobs
dba_jobs_running 包含正在运行
- 多线程机制
朱辉辉33
多线程
转至http://blog.csdn.net/lj70024/archive/2010/04/06/5455790.aspx
程序、进程和线程:
程序是一段静态的代码,它是应用程序执行的蓝本。进程是程序的一次动态执行过程,它对应了从代码加载、执行至执行完毕的一个完整过程,这个过程也是进程本身从产生、发展至消亡的过程。线程是比进程更小的单位,一个进程执行过程中可以产生多个线程,每个线程有自身的
- web报表工具FineReport使用中遇到的常见报错及解决办法(一)
老A不折腾
web报表finereportjava报表报表工具
FineReport使用中遇到的常见报错及解决办法(一)
这里写点抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、address pool is full:
含义:地址池满,连接数超过并发数上
- mysql rpm安装后没有my.cnf
林鹤霄
没有my.cnf
Linux下用rpm包安装的MySQL是不会安装/etc/my.cnf文件的,
至于为什么没有这个文件而MySQL却也能正常启动和作用,在这儿有两个说法,
第一种说法,my.cnf只是MySQL启动时的一个参数文件,可以没有它,这时MySQL会用内置的默认参数启动,
第二种说法,MySQL在启动时自动使用/usr/share/mysql目录下的my-medium.cnf文件,这种说法仅限于r
- Kindle Fire HDX root并安装谷歌服务框架之后仍无法登陆谷歌账号的问题
aigo
root
原文:http://kindlefireforkid.com/how-to-setup-a-google-account-on-amazon-fire-tablet/
Step 4: Run ADB command from your PC
On the PC, you need install Amazon Fire ADB driver and instal
- javascript 中var提升的典型实例
alxw4616
JavaScript
// 刚刚在书上看到的一个小问题,很有意思.大家一起思考下吧
myname = 'global';
var fn = function () {
console.log(myname); // undefined
var myname = 'local';
console.log(myname); // local
};
fn()
// 上述代码实际上等同于以下代码
m
- 定时器和获取时间的使用
百合不是茶
时间的转换定时器
定时器:定时创建任务在游戏设计的时候用的比较多
Timer();定时器
TImerTask();Timer的子类 由 Timer 安排为一次执行或重复执行的任务。
定时器类Timer在java.util包中。使用时,先实例化,然后使用实例的schedule(TimerTask task, long delay)方法,设定
- JDK1.5 Queue
bijian1013
javathreadjava多线程Queue
JDK1.5 Queue
LinkedList:
LinkedList不是同步的。如果多个线程同时访问列表,而其中至少一个线程从结构上修改了该列表,则它必须 保持外部同步。(结构修改指添加或删除一个或多个元素的任何操作;仅设置元素的值不是结构修改。)这一般通过对自然封装该列表的对象进行同步操作来完成。如果不存在这样的对象,则应该使用 Collections.synchronizedList 方
- http认证原理和https
bijian1013
httphttps
一.基础介绍
在URL前加https://前缀表明是用SSL加密的。 你的电脑与服务器之间收发的信息传输将更加安全。
Web服务器启用SSL需要获得一个服务器证书并将该证书与要使用SSL的服务器绑定。
http和https使用的是完全不同的连接方式,用的端口也不一样,前者是80,后
- 【Java范型五】范型继承
bit1129
java
定义如下一个抽象的范型类,其中定义了两个范型参数,T1,T2
package com.tom.lang.generics;
public abstract class SuperGenerics<T1, T2> {
private T1 t1;
private T2 t2;
public abstract void doIt(T
- 【Nginx六】nginx.conf常用指令(Directive)
bit1129
Directive
1. worker_processes 8;
表示Nginx将启动8个工作者进程,通过ps -ef|grep nginx,会发现有8个Nginx Worker Process在运行
nobody 53879 118449 0 Apr22 ? 00:26:15 nginx: worker process
- lua 遍历Header头部
ronin47
lua header 遍历
local headers = ngx.req.get_headers()
ngx.say("headers begin", "<br/>")
ngx.say("Host : ", he
- java-32.通过交换a,b中的元素,使[序列a元素的和]与[序列b元素的和]之间的差最小(两数组的差最小)。
bylijinnan
java
import java.util.Arrays;
public class MinSumASumB {
/**
* Q32.有两个序列a,b,大小都为n,序列元素的值任意整数,无序.
*
* 要求:通过交换a,b中的元素,使[序列a元素的和]与[序列b元素的和]之间的差最小。
* 例如:
* int[] a = {100,99,98,1,2,3
- redis
开窍的石头
redis
在redis的redis.conf配置文件中找到# requirepass foobared
把它替换成requirepass 12356789 后边的12356789就是你的密码
打开redis客户端输入config get requirepass
返回
redis 127.0.0.1:6379> config get requirepass
1) "require
- [JAVA图像与图形]现有的GPU架构支持JAVA语言吗?
comsci
java语言
无论是opengl还是cuda,都是建立在C语言体系架构基础上的,在未来,图像图形处理业务快速发展,相关领域市场不断扩大的情况下,我们JAVA语言系统怎么从这么庞大,且还在不断扩大的市场上分到一块蛋糕,是值得每个JAVAER认真思考和行动的事情
- 安装ubuntu14.04登录后花屏了怎么办
cuiyadll
ubuntu
这个情况,一般属于显卡驱动问题。
可以先尝试安装显卡的官方闭源驱动。
按键盘三个键:CTRL + ALT + F1
进入终端,输入用户名和密码登录终端:
安装amd的显卡驱动
sudo
apt-get
install
fglrx
安装nvidia显卡驱动
sudo
ap
- SSL 与 数字证书 的基本概念和工作原理
darrenzhu
加密ssl证书密钥签名
SSL 与 数字证书 的基本概念和工作原理
http://www.linuxde.net/2012/03/8301.html
SSL握手协议的目的是或最终结果是让客户端和服务器拥有一个共同的密钥,握手协议本身是基于非对称加密机制的,之后就使用共同的密钥基于对称加密机制进行信息交换。
http://www.ibm.com/developerworks/cn/webspher
- Ubuntu设置ip的步骤
dcj3sjt126com
ubuntu
在单位的一台机器完全装了Ubuntu Server,但回家只能在XP上VM一个,装的时候网卡是DHCP的,用ifconfig查了一下ip是192.168.92.128,可以ping通。
转载不是错:
Ubuntu命令行修改网络配置方法
/etc/network/interfaces打开后里面可设置DHCP或手动设置静态ip。前面auto eth0,让网卡开机自动挂载.
1. 以D
- php包管理工具推荐
dcj3sjt126com
PHPComposer
http://www.phpcomposer.com/
Composer是 PHP 用来管理依赖(dependency)关系的工具。你可以在自己的项目中声明所依赖的外部工具库(libraries),Composer 会帮你安装这些依赖的库文件。
中文文档
入门指南
下载
安装包列表
Composer 中国镜像
- Gson使用四(TypeAdapter)
eksliang
jsongsonGson自定义转换器gsonTypeAdapter
转载请出自出处:http://eksliang.iteye.com/blog/2175595 一.概述
Gson的TypeAapter可以理解成自定义序列化和返序列化 二、应用场景举例
例如我们通常去注册时(那些外国网站),会让我们输入firstName,lastName,但是转到我们都
- JQM控件之Navbar和Tabs
gundumw100
htmlxmlcss
在JQM中使用导航栏Navbar是简单的。
只需要将data-role="navbar"赋给div即可:
<div data-role="navbar">
<ul>
<li><a href="#" class="ui-btn-active&qu
- 利用归并排序算法对大文件进行排序
iwindyforest
java归并排序大文件分治法Merge sort
归并排序算法介绍,请参照Wikipeida
zh.wikipedia.org/wiki/%E5%BD%92%E5%B9%B6%E6%8E%92%E5%BA%8F
基本思想:
大文件分割成行数相等的两个子文件,递归(归并排序)两个子文件,直到递归到分割成的子文件低于限制行数
低于限制行数的子文件直接排序
两个排序好的子文件归并到父文件
直到最后所有排序好的父文件归并到输入
- iOS UIWebView URL拦截
啸笑天
UIWebView
本文译者:candeladiao,原文:URL filtering for UIWebView on the iPhone说明:译者在做app开发时,因为页面的javascript文件比较大导致加载速度很慢,所以想把javascript文件打包在app里,当UIWebView需要加载该脚本时就从app本地读取,但UIWebView并不支持加载本地资源。最后从下文中找到了解决方法,第一次翻译,难免有
- 索引的碎片整理SQL语句
macroli
sql
SET NOCOUNT ON
DECLARE @tablename VARCHAR (128)
DECLARE @execstr VARCHAR (255)
DECLARE @objectid INT
DECLARE @indexid INT
DECLARE @frag DECIMAL
DECLARE @maxfrag DECIMAL
--设置最大允许的碎片数量,超过则对索引进行碎片
- Angularjs同步操作http请求with $promise
qiaolevip
每天进步一点点学习永无止境AngularJS纵观千象
// Define a factory
app.factory('profilePromise', ['$q', 'AccountService', function($q, AccountService) {
var deferred = $q.defer();
AccountService.getProfile().then(function(res) {
- hibernate联合查询问题
sxj19881213
sqlHibernateHQL联合查询
最近在用hibernate做项目,遇到了联合查询的问题,以及联合查询中的N+1问题。
针对无外键关联的联合查询,我做了HQL和SQL的实验,希望能帮助到大家。(我使用的版本是hibernate3.3.2)
1 几个常识:
(1)hql中的几种join查询,只有在外键关联、并且作了相应配置时才能使用。
(2)hql的默认查询策略,在进行联合查询时,会产
- struts2.xml
wuai
struts
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"
"http://struts.apache