- android备忘录app设计er图,图、流程图、ER图怎么画及常见画图工具(流程图文章汇总)...
weixin_39714164
跟我一起写Makefile---变量(嵌套变量+追加变量+overrid+多行变量+环境变量+目标变量+模式变量)目录(?)[-]使用变量一变量的基础二变量中的变量三变量高级用法四追加变量值五override指示符六多行变量七环境变量八目标变量九模式变量使用变量————在Makefil...UVA10537TheToll!Rev
- leetcode-82. Remove Duplicates from Sorted List II
千念飞羽
JAVAleetcodeleetcodejava
leetcode-82.RemoveDuplicatesfromSortedListII题目:Givenasortedlinkedlist,deleteallnodesthathaveduplicatenumbers,leavingonlydistinctnumbersfromtheoriginallist.Forexample,Given1->2->3->3->4->4->5,return1->
- PostgreSQL | 生成UUID 报错:HINT: No function matches the given name and argument types
慌途L
PostgreSQLpostgresqluuiduuid_generategen_random_uuid
在PG数据库上新建表结构:CREATETABLE"public"."t_test"("guid"uuidNOTNULLDEFAULTuuid_generate_v4(),"data"jsonb,"create_time"timestamptz(6)DEFAULTnow(),CONSTRAINT"test_pkey"PRIMARYKEY("guid"));报错:ERROR:functionuuid_
- PDF和CDF
薛定谔的猫_大雪
概率论
在概率论和统计学中,PDF和CDF是两种描述随机变量分布的重要函数:ProbabilityDensityFunction(PDF):概率密度函数是用来描述连续随机变量可能取值的概率分布的函数。对于一个连续型随机变量X,其PDFf(x)定义为在某个取值x处的概率密度,即X在该值附近出现的概率密度。PDF的积分可以得到概率,即在某个区间内随机变量出现的概率。CumulativeDensityFunct
- UVA 674 Coin Change(完全背包求解方案数)
沙雕.
背包问题DP
题目链接:https://vjudge.net/problem/UVA-674解题思路:情景:一定容量V的包,有n样物品,每样无数件,重量wi,价值vi,问你背包最多有多少种可以装满的不同方案?做法:①dp[j]表示当前只装前i件物品最大的价值②状态转移方程:dp[j]=(j>=w[i])?dp[j]+dp[j-w[i]]:dp[j];如果当前的背包不能装下第i件物品,那么就等于前i-1件dp[j
- 数据结构总结之最短路径
@阿奇@
最短路径图论
1.弗洛伊德算法模板题:uva10000#include#includeusingnamespacestd;intdis[105][105];intmain(){intn;intt=0;while(cin>>n,n){inta,b,s;memset(dis,-1,sizeof(dis));cin>>s;while(cin>>a>>b,a)dis[a][b]=1;inti,j;for(intk=1;
- 人工智能与机器学习原理精解【17】
叶绿先锋
基础数学与应用数学人工智能机器学习概率论
文章目录贝叶斯贝叶斯定理的公式推导一、条件概率的定义二、联合概率的分解三、贝叶斯定理的推导四、全概率公式的应用五、总结全概率公式推导一、全概率公式的定义二、全概率公式的推导三、全概率公式的应用贝叶斯定理的原理一、基本原理二、核心概念三、数学表达式四、原理应用五、原理特点朴素贝叶斯定理一、贝叶斯定理基础二、朴素贝叶斯的原理三、朴素贝叶斯的特点朴素贝叶斯公式一、贝叶斯定理二、特征独立性假设三、朴素贝叶
- NLP从零开始------17.文本中阶处理之序列到序列模型(2)
人生百态,人生如梦
nlp从零开始自然语言处理人工智能
3.学习序列到序列模型可以看成一种条件语言模型,以源句x为条件计算目标句的条件概率该条件概率通过概率乘法公式分解为从左到右每个词的条件概率之积:序列到序列模型的监督学习需要使用平行语料,其中每个数据点都包含一对源句和目标句。以中译英机器翻译为例,平行语料的每个数据点就是一句中文句子和对应的一句英文句子。机器翻译领域较为有名的平行语料库来自机器翻译研讨会(workshoponmachinetrans
- 前 5 名专业照片恢复软件 | 支持恢复丢失的图片和图像
分享者花花
数据恢复软件数据恢复文件恢复iphoneioswindows单片机嵌入式硬件笔记本电脑电脑
有几种付费和免费的照片恢复软件可帮助用户从意外的数据丢失情况中恢复。我们将介绍五种工具并为您提供信息,以帮助您准确决定哪种软件最适合用户需求。如果用户采取正确的步骤,恢复丢失的图片和图像可能是一个简单的过程。首先,检查回收站or垃圾桶在计算机上,因为已删除的文件通常会暂时保留在那里。如果图像不存在,请使用奇客数据恢复软件,如Recuva,PhotoRec,或DiskDrill,它们可以扫描用户的存
- Matlab实现多传感器信息融合(D-S证据推论)
冬天都会过去
D-S证据理论是对贝叶斯推理方法推广,主要是利用概率论中贝叶斯条件概率来进行的,贝叶斯条件概率需要知道先验概率。而D-S证据理论不需要知道先验概率,能够很好地表示“不确定”,被广泛用来处理不确定数据。(对来自多传感器数据的融合处理)适用于:信息融合、专家系统、情报分析、法律案件分析、多属性决策分析1、D-S证据理论知识介绍(1)四大定义基本概率分配、信任函数、似然函数、信任区间其中,函数m为识别框
- 亦菲喊你来学机器学习(14) --贝叶斯算法
方世恩
机器学习算法人工智能pythonscikit-learn
文章目录贝叶斯一、贝叶斯定理二、贝叶斯算法的核心概念三、贝叶斯算法的优点与局限优点:局限:四、构建模型训练模型测试模型总结贝叶斯贝叶斯算法(Bayesianalgorithm)是一种基于贝叶斯定理的机器学习方法,主要用于估计模型参数和进行概率推断。以下是对贝叶斯算法的详细解析:一、贝叶斯定理贝叶斯定理是概率论中的一个基本定理,它描述了条件概率之间的关系。该定理的数学表达式为:P(A∣B)=P(B)
- guva java list取交集_java guava 集合的操作:交集、差集、并集
鲸阮
guvajavalist取交集
Guava:google的工程师利用传说中的“20%时间”开发的集合库,它是对jdk提供的扩展,提供了很多实用的类来简化代码。开源地址:https://github.com/google/guavajar包下载:http://maven.outofmemory.cn/com.google.guava/guava/packagecom.uwo9.test08;importjava.util.Set;
- A brief review of probability theory
世界上的一道风
AbriefreviewofprobabilitytheoryFundamentalrulesproductrule:yieldchainrule:sumrule:Bayesrule:Quantiles(分位数)cdf是,逆函数是,分位数的作用是,有,表示的意思是。也就是说,是一个概率值,代入累积分布的逆函数中,返回的是对应概率面积的截断点:根据公式测试:importnumpyasnpimport
- Dropping Balls(UVA 679)
Fool256353
算法数据结构c++
网址如下:DroppingBalls-UVA679-VirtualJudge(vjudge.net)(第三方网站)二叉树别说了,我只会模拟,最后用时530ms结果算法书给出了一个优化的解法:因为小球要么往左,要么往右,根据到这个点有几个小球可以推断出当前点的状态,根据要求的第几个小球可以推断在这个点有多少个球往左走了,多少个球往右走了这样可以根据I直接推断出第I个的动向,配合D直接算出答案用时20
- 【机器学习与R语言】12- 如何评估模型的性能?
生物信息与育种
1.评估分类方法的性能拥有能够度量实用性而不是原始准确度的模型性能评价方法是至关重要的。3种数据类型评价分类器:真实的分类值;预测的分类值;预测的估计概率。之前的分类算法案例只用了前2种。对于单一预测类别,可将predict函数设定为class类型,如果要得到预测的概率,可设为为prob、posterior、raw或probability等类型。predict大部分情况下返回对结果不同水平的预测概
- php报错:Error: count(): Argument #1 ($value) must be of type Countable|array, null given
見贤思齊
运维php开发语言
目录一、背景二、报错内容三、解决方案一、背景为了能给SVN前端用户提供友好的可视化工具,安装了if.svnadmin工具,但是默认安装时,php版本为7.2,该版本高危漏洞太多,所以将其升级到了php8以上,在svnadmin管理后台给用户及用户组授权时,遇到了报错。二、报错内容Error:count():Argument#1($value)mustbeoftypeCountable|array,
- 【深度学习】S2 数学基础 P6 概率论
脚踏实地的大梦想家
#深度学习深度学习概率论
目录基本概率论概率论公理随机变量多个随机变量联合概率条件概率贝叶斯定理求和法则独立性期望与方差小结基本概率论机器学习本质上,就是做出预测。而概率论提供了一种量化和表达不确定性水平的方法,可以帮助我们量化对某个结果的确定性程度。在一个简单的图像分类任务中;如果我们非常确定图像中的对象是一只猫,那么我们可以说标签为“猫”的概率是1,即P(y=“猫”)=1P(y=“猫”)=1P(y=“猫”)=1;如果我
- 趣学贝叶斯统计:概率密度分布(probability density function)
Ashleyxxihf
趣学贝叶斯统计r语言算法pdf概率论
目录1.分布:PDF与PMFPDFPMF2.将概率密度函数应用于我们的问题用积分量化连续分布积分度量变化率:导数3.R语言实践4.小结1.分布:PDF与PMFPDFPDF定义在连续值上。在连续型随机变量的情况下,具体取某个数值的概率是0,因此PDF并不直接给出某个点的概率,而是给出了在某个区间内随机变量出现的概率密度。在数学上,PDF就是定义在连续值上的概率密度函数。概率密度函数(probabil
- Echarts绘制任意数据的正态分布图
tsunami_______
Vueecharts前端javascript
一、什么是正态分布正态分布,又称高斯分布或钟形曲线,是统计学中最为重要和常用的分布之一。正态分布是一种连续型的概率分布,其概率密度函数(ProbabilityDensityFunction,简称PDF)可以通过一个平均值(μ,mu)和标准差(σ,sigma)来完全描述。若随机变量X服从一个数学期望为μ、方差为σ2的正态分布,记为N(μ,σ2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准
- CDF和PDF的比较
武小胖儿
数学知识
以下内容来自ChatGPT,科技改变生活CumulativeDistributionFunction(CDF)(累积分布函数)和ProbabilityDensityFunction(PDF)(概率密度函数)是统计学和概率论中两个重要的概念,用于描述随机变量的性质。它们之间的区别如下:定义:CDF(累积分布函数):CDF表示一个随机变量小于或等于某个特定值的概率。对于随机变量X,其CDF通常表示为F
- 自然语言生成任务中的5种采样方法介绍和Pytorch代码实现
在自然语言生成任务(NLG)中,采样方法是指从生成模型中获取文本输出的一种技术。本文将介绍常用的5中方法并用Pytorch进行实现。1、GreedyDecodingGreedyDecoding在每个时间步选择当前条件概率最高的词语作为输出,直到生成结束。在贪婪解码中,生成模型根据输入序列,逐个时间步地预测输出序列中的每个词语。在每个时间步,模型根据当前的隐藏状态和已生成的部分序列计算每个词语的条件
- 扩散模型原理+DDPM案例代码解析
Mikey@Li
机器学习人工智能深度学习
扩散模型原理+代码解析一、数学基础1.1一般的条件概率形式1.2马尔可夫链条件概率形式1.3先验概率和后验概率1.4重参数化技巧1.5KL散度公式二、扩散模型的整体逻辑(以DDPM为例)2.1Diffusion扩散过程(Forward加噪过程)2.2逆向过程(reverse去噪过程)三、训练过程和采样过程3.1训练过程3.2采样过程3.3模型训练的一些细节3.3.1网络的选择3.3.2一些超参数的
- Pixel Recurrent Neural Networks 和 autoregressive models 自回归模型
Longlongaaago
机器学习深度学习
PixelRecurrentNeuralNetworkspixelrnn是生成模型的一种,基于autoregressivemodels。他的思想很简单,就是最大似然估计的方式去拟合图像数据。将二维的图像数据比作序列数据,以条件概率的方式,逐点预测和计算。并且每个像素点的预测都在[0-255]之间,(单通道情况下)如下图1所示:图1,autoregressivemodels在二维图片上的预测方式。其
- uva11400照明系统设计
kinoud
从最简单的情况一步一步分析。首先把灯泡按电压高低排序,第1种电压最低。先只考虑第1种灯泡,没得改。然后考虑前2种灯泡,第2种灯泡可以去替换第1种灯泡,原则是省钱。如果第2种灯泡单价比较便宜,换不换?当然换,而且是把第1种全都换了。如果第2种单价贵,换不换需要试一试,把第1种换完省下一个电源钱,看看最后省没省钱。至此得到第一个结论,如果某种灯泡要被换成其他的,那一定是全部换成另外一种。考虑前2种,我
- 碳素光线疗法
安天翼 An Tian Yi
健康医疗生活
碳素光线疗法:中西医、民间疗法融为一体,提高机体自身治愈力,免疫力,改善体质和保持健康,有助于疾病的预防和治疗的疗法。不吃药、不打针、不手术也能得健康,无任何副作用的自然物理疗法。原理:3000~5000度之间超高温中燃烧的高纯度碳棒释放出对人体健康有益的红外线[远、中、近]、可视光红外线、可视光[红、蓝、绿、黄、橙、青、紫]紫外线[UVA]等与太阳光一致的对人体健康有益的几十万种综合性连续光线[
- UVA207 ac心得
laomai
算法C/CPPuvauva207
花了4天时间实现了刘汝佳紫书上的例题5-10,也就是UVA207,修改了5版才AC.这里把遇到的坑说一下,供后来者参考1、业余选手只参与排名,不参与分奖金,所以哪怕一个业余选手和其他职业选手同分(从而名次相同),也不输出T2、只有在同一个分数两名或者更多职业选手平分奖金时,这些职业选手的名次后面才输出T,算,所以对没获奖的名次,有多少人并列都不输出T,也就是输出T的条件是本名次的获奖人数>=23、
- UVA822 ac要点
laomai
算法
首先题目里的每个人按优先级选工作的表达是不准确的,正确的说法是:让每个人都尽量选自己最熟悉的工作,并且如果一个人没找到自己最熟悉的工作的话,则要把挑选机会让给下一个人,而不是继续找自己下一个熟悉的工作.举个例子假定每个人的技能数都是5个,那么最坏情况下要经过5轮才能每个人都分配到工作,也就是第一轮让每个人都尽量选自己最熟悉的工作,如果都找到了,则循环结束。否则没有找到工作的人进行第2轮挑选,选的是
- 7/3 Learning essay of probability
rusty6kimo
TodayIlearnedanothernicepropertofPascal'striangle.ChoosingKpeoplefromNpeopleequalstothenumberofwaysofchoosingk-1peoplefromN-1people,plusthenumberofwaysofchoosingKpeoplefromN-1people.It'seasyandveryint
- UVA-489 Hangman Judge
pocketdream
ExerciseUVAUVA
In“HangmanJudge,”youaretowriteaprogramthatjudgesaseriesofHangmangames.Foreachgame,theanswertothepuzzleisgivenaswellastheguesses.Rulesarethesameastheclassicgameofhangman,andaregivenasfollows:1.Theconte
- UVa489 - Hangman Judge
pkustu
c++算法开发语言
#include#includeusingnamespacestd;stringa[3]={"Youwin.","Youlose.","Youchickenedout."};intchance,lef;strings1,s2;voidhangman(charc){intlen=s1.length();boolflag=true;for(inti=0;i>n&&n!=-1){cout>s1>>s2;
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理