linux内核V2.6.11学习笔记(6)--中断处理
每个中断处理的函数存放在entry.S中的interrupt数组中,该数组有NR_IRQS个元素.
每个元素做的工作有:
首先将中断向量- 256保存在栈中
其中的SAVE_ALL做的工作包括:
也就是保存一些寄存器, 然后调用do_IRQ函数:
do_IRQ函数首先调用irq_enter()函数:
其中要注意的是函数add_preempt_count, 它改变的是当前进程中thread_info中的成员preempt_count,它是一个32位的字段,分为几个部分,:
0-7位: 抢占计数器, 最大值255
8-15位: 软中断计数器, 最大值255
16-27位: 硬中断计数器, 最大值4096
28位: PREEMPT_ACTIVE标志
因此,在hardirq.h中定义了几个宏:
因此, 函数调用add_preempt_count(HARDIRQ_OFFSET)是增加其中硬中断的计数.
回到do_IRQ函数调用中,接下来:
这段代码仅在线程栈大小是4K的情况下被调用, 有一个名为hardirq_ctx的数组保存硬中断的请求栈,它的定义是:
在系统初始化的时候, 调用函数irq_ctx_init, 分别把这两个数组中的元素(irq_ctx *类型指针)指向hardirq_stack和softirq_stack:
的内容, 如果相同, 说明内核已经在使用硬件中断请求栈了, 否则如果不相等那么就要切换内核栈,需要保存当前进程描述符指针和esp寄存器.
接着, do_IRQ函数调用__do_IRQ函数,这个函数的主要工作有:
在循环处理IRQ请求的时候, 最开始要设置状态为 IRQ_INPROGRESS同时不是IRQ_PENDING, 这个循环处理IRQ请求的过程在当前状态是IRQ_PENDING则一直进行下去,
当该循环处理完毕之后, 再将状态设置为IRQ_INPROGRESS.
在从__do_IRQ函数返回后, 调用irq_exit函数:
该函数首先调用sub_preempt_count减少抢占计数, 然后如果当前不在中断状态以及当前有未处理的软中断(softirq)则调用invoke_softirq函数(其实就是do_softirq函数)
处理软中断,最后调用preempt_enable_no_resched允许内核抢占.
每个元素做的工作有:
ENTRY(irq_entries_start)
.rept NR_IRQS
ALIGN
1 : pushl $vector - 256
jmp common_interrupt
.data
. long 1b
.text
vector = vector + 1
.endr
ALIGN
common_interrupt:
SAVE_ALL
movl % esp, % eax
call do_IRQ
jmp ret_from_intr
.rept NR_IRQS
ALIGN
1 : pushl $vector - 256
jmp common_interrupt
.data
. long 1b
.text
vector = vector + 1
.endr
ALIGN
common_interrupt:
SAVE_ALL
movl % esp, % eax
call do_IRQ
jmp ret_from_intr
首先将中断向量- 256保存在栈中
其中的SAVE_ALL做的工作包括:
#define
SAVE_ALL \
cld; \
pushl % es; \
pushl % ds; \
pushl % eax; \
pushl % ebp; \
pushl % edi; \
pushl % esi; \
pushl % edx; \
pushl % ecx; \
pushl % ebx; \
movl $(__USER_DS), % edx; \
movl % edx, % ds; \
movl % edx, % es;
cld; \
pushl % es; \
pushl % ds; \
pushl % eax; \
pushl % ebp; \
pushl % edi; \
pushl % esi; \
pushl % edx; \
pushl % ecx; \
pushl % ebx; \
movl $(__USER_DS), % edx; \
movl % edx, % ds; \
movl % edx, % es;
也就是保存一些寄存器, 然后调用do_IRQ函数:
do_IRQ函数首先调用irq_enter()函数:
#define
irq_enter() \
do { \
account_system_vtime(current); \
add_preempt_count(HARDIRQ_OFFSET); \
} while ( 0 )
do { \
account_system_vtime(current); \
add_preempt_count(HARDIRQ_OFFSET); \
} while ( 0 )
其中要注意的是函数add_preempt_count, 它改变的是当前进程中thread_info中的成员preempt_count,它是一个32位的字段,分为几个部分,:
0-7位: 抢占计数器, 最大值255
8-15位: 软中断计数器, 最大值255
16-27位: 硬中断计数器, 最大值4096
28位: PREEMPT_ACTIVE标志
因此,在hardirq.h中定义了几个宏:
#define
PREEMPT_BITS 8
#define SOFTIRQ_BITS 8
#define HARDIRQ_BITS 12
#define PREEMPT_SHIFT 0
#define SOFTIRQ_SHIFT (PREEMPT_SHIFT + PREEMPT_BITS)
#define HARDIRQ_SHIFT (SOFTIRQ_SHIFT + SOFTIRQ_BITS)
#define PREEMPT_OFFSET (1UL << PREEMPT_SHIFT)
#define SOFTIRQ_OFFSET (1UL << SOFTIRQ_SHIFT)
#define HARDIRQ_OFFSET (1UL << HARDIRQ_SHIFT)
#define SOFTIRQ_BITS 8
#define HARDIRQ_BITS 12
#define PREEMPT_SHIFT 0
#define SOFTIRQ_SHIFT (PREEMPT_SHIFT + PREEMPT_BITS)
#define HARDIRQ_SHIFT (SOFTIRQ_SHIFT + SOFTIRQ_BITS)
#define PREEMPT_OFFSET (1UL << PREEMPT_SHIFT)
#define SOFTIRQ_OFFSET (1UL << SOFTIRQ_SHIFT)
#define HARDIRQ_OFFSET (1UL << HARDIRQ_SHIFT)
因此, 函数调用add_preempt_count(HARDIRQ_OFFSET)是增加其中硬中断的计数.
回到do_IRQ函数调用中,接下来:
#ifdef CONFIG_4KSTACKS
curctx = (union irq_ctx * ) current_thread_info();
irqctx = hardirq_ctx[smp_processor_id()];
/*
* this is where we switch to the IRQ stack. However, if we are
* already using the IRQ stack (because we interrupted a hardirq
* handler) we can't do that and just have to keep using the
* current stack (which is the irq stack already after all)
*/
if (curctx != irqctx) {
int arg1, arg2, ebx;
/* build the stack frame on the IRQ stack */
isp = (u32 * ) (( char * )irqctx + sizeof ( * irqctx));
irqctx -> tinfo.task = curctx -> tinfo.task;
irqctx -> tinfo.previous_esp = current_stack_pointer;
asm volatile (
" xchgl %%ebx,%%esp \n "
" call __do_IRQ \n "
" movl %%ebx,%%esp \n "
: " =a " (arg1), " =d " (arg2), " =b " (ebx)
: " 0 " (irq), " 1 " (regs), " 2 " (isp)
: " memory " , " cc " , " ecx "
);
} else
#endif
curctx = (union irq_ctx * ) current_thread_info();
irqctx = hardirq_ctx[smp_processor_id()];
/*
* this is where we switch to the IRQ stack. However, if we are
* already using the IRQ stack (because we interrupted a hardirq
* handler) we can't do that and just have to keep using the
* current stack (which is the irq stack already after all)
*/
if (curctx != irqctx) {
int arg1, arg2, ebx;
/* build the stack frame on the IRQ stack */
isp = (u32 * ) (( char * )irqctx + sizeof ( * irqctx));
irqctx -> tinfo.task = curctx -> tinfo.task;
irqctx -> tinfo.previous_esp = current_stack_pointer;
asm volatile (
" xchgl %%ebx,%%esp \n "
" call __do_IRQ \n "
" movl %%ebx,%%esp \n "
: " =a " (arg1), " =d " (arg2), " =b " (ebx)
: " 0 " (irq), " 1 " (regs), " 2 " (isp)
: " memory " , " cc " , " ecx "
);
} else
#endif
这段代码仅在线程栈大小是4K的情况下被调用, 有一个名为hardirq_ctx的数组保存硬中断的请求栈,它的定义是:
union irq_ctx {
struct thread_info tinfo;
u32 stack[THREAD_SIZE / sizeof (u32)];
};
static union irq_ctx * hardirq_ctx[NR_CPUS];
static union irq_ctx * softirq_ctx[NR_CPUS];
也就是说, 这两个数组的元素数量由CPU数量来决定.
struct thread_info tinfo;
u32 stack[THREAD_SIZE / sizeof (u32)];
};
static union irq_ctx * hardirq_ctx[NR_CPUS];
static union irq_ctx * softirq_ctx[NR_CPUS];
在系统初始化的时候, 调用函数irq_ctx_init, 分别把这两个数组中的元素(irq_ctx *类型指针)指向hardirq_stack和softirq_stack:
static
char
softirq_stack[NR_CPUS
*
THREAD_SIZE]
__attribute__((__aligned__(THREAD_SIZE)));
static char hardirq_stack[NR_CPUS * THREAD_SIZE]
__attribute__((__aligned__(THREAD_SIZE)));
因此, 上面的那段do_IRQ函数中的代码做的工作比较当前thread_info描述符地址(通过调用current_thread_info()函数)与hardirq_ctx
__attribute__((__aligned__(THREAD_SIZE)));
static char hardirq_stack[NR_CPUS * THREAD_SIZE]
__attribute__((__aligned__(THREAD_SIZE)));
的内容, 如果相同, 说明内核已经在使用硬件中断请求栈了, 否则如果不相等那么就要切换内核栈,需要保存当前进程描述符指针和esp寄存器.
接着, do_IRQ函数调用__do_IRQ函数,这个函数的主要工作有:
//
加锁
spin_lock( & (irq_desc[irq]. lock ));
// 响应
irq_desc[irq].handler -> ack(irq);
// 当前状态既不是IRQ_REPLAY:The IRQ line has been disabled but the previous IRQ occurrence has not yet been acknowledged to the PIC
// 也不是IRQ_WAITING:The kernel is using the IRQ line while performing a hardware device probe; moreover, the corresponding interrupt has not been raised
irq_desc[irq].status &= ~ (IRQ_REPLAY | IRQ_WAITING);
// 当前状态为IRQ_PENDING:An IRQ has occurred on the line; its occurrence has been acknowledged to the PIC, but it has not yet been serviced by the kernel
irq_desc[irq].status |= IRQ_PENDING;
if ( ! (irq_desc[irq].status & (IRQ_DISABLED | IRQ_INPROGRESS)) // 如果当前状态不是IRQ_DISABLED 或者 IRQ_INPROGRESS
&& irq_desc[irq].action) { // action指针有效
irq_desc[irq].status |= IRQ_INPROGRESS; // 设置当前当前状态为IRQ_INPROGRESS: A handler for the IRQ is being executed
do {
irq_desc[irq].status &= ~ IRQ_PENDING; // 设置当前当前状态不是IRQ_PENDING,因为下面要开始处理了
spin_unlock( & (irq_desc[irq]. lock ));
handle_IRQ_event(irq, regs, irq_desc[irq].action); // 处理事件
spin_lock( & (irq_desc[irq]. lock ));
} while (irq_desc[irq].status & IRQ_PENDING); // 如果当前状态还是IRQ_PENDING循环继续
irq_desc[irq].status &= ~ IRQ_INPROGRESS; // 设置当前状态不是IRQ_INPROGRESS
}
irq_desc[irq].handler -> end(irq);
spin_unlock( & (irq_desc[irq]. lock ));
spin_lock( & (irq_desc[irq]. lock ));
// 响应
irq_desc[irq].handler -> ack(irq);
// 当前状态既不是IRQ_REPLAY:The IRQ line has been disabled but the previous IRQ occurrence has not yet been acknowledged to the PIC
// 也不是IRQ_WAITING:The kernel is using the IRQ line while performing a hardware device probe; moreover, the corresponding interrupt has not been raised
irq_desc[irq].status &= ~ (IRQ_REPLAY | IRQ_WAITING);
// 当前状态为IRQ_PENDING:An IRQ has occurred on the line; its occurrence has been acknowledged to the PIC, but it has not yet been serviced by the kernel
irq_desc[irq].status |= IRQ_PENDING;
if ( ! (irq_desc[irq].status & (IRQ_DISABLED | IRQ_INPROGRESS)) // 如果当前状态不是IRQ_DISABLED 或者 IRQ_INPROGRESS
&& irq_desc[irq].action) { // action指针有效
irq_desc[irq].status |= IRQ_INPROGRESS; // 设置当前当前状态为IRQ_INPROGRESS: A handler for the IRQ is being executed
do {
irq_desc[irq].status &= ~ IRQ_PENDING; // 设置当前当前状态不是IRQ_PENDING,因为下面要开始处理了
spin_unlock( & (irq_desc[irq]. lock ));
handle_IRQ_event(irq, regs, irq_desc[irq].action); // 处理事件
spin_lock( & (irq_desc[irq]. lock ));
} while (irq_desc[irq].status & IRQ_PENDING); // 如果当前状态还是IRQ_PENDING循环继续
irq_desc[irq].status &= ~ IRQ_INPROGRESS; // 设置当前状态不是IRQ_INPROGRESS
}
irq_desc[irq].handler -> end(irq);
spin_unlock( & (irq_desc[irq]. lock ));
在循环处理IRQ请求的时候, 最开始要设置状态为 IRQ_INPROGRESS同时不是IRQ_PENDING, 这个循环处理IRQ请求的过程在当前状态是IRQ_PENDING则一直进行下去,
当该循环处理完毕之后, 再将状态设置为IRQ_INPROGRESS.
在从__do_IRQ函数返回后, 调用irq_exit函数:
void
irq_exit(
void
)
{
account_system_vtime(current);
sub_preempt_count(IRQ_EXIT_OFFSET);
if ( ! in_interrupt() && local_softirq_pending())
invoke_softirq();
preempt_enable_no_resched();
}
{
account_system_vtime(current);
sub_preempt_count(IRQ_EXIT_OFFSET);
if ( ! in_interrupt() && local_softirq_pending())
invoke_softirq();
preempt_enable_no_resched();
}
该函数首先调用sub_preempt_count减少抢占计数, 然后如果当前不在中断状态以及当前有未处理的软中断(softirq)则调用invoke_softirq函数(其实就是do_softirq函数)
处理软中断,最后调用preempt_enable_no_resched允许内核抢占.