不同位深的图像之间用函数 cvConvertScale 转换;
http://www.opencv.org.cn/forum/viewtopic.php?t=2286
http://www.opencv.org.cn/forum/viewtopic.php?t=2263
opencv中的 混合高斯模型算法根据《An Improved Adaptive Background Mixture Model for Realtime Tracking with Shadow Detection》文档中的算法编写,这个文档的算法中还有阴影检测的算法,但是opencv中有icvUpdateGaussianBGModel算 法,不知是否有阴影检测的算法,文章可以在中国图像图形学网站上找到;
http://www.opencv.org.cn/forum/viewtopic.php?t=1688
以下代码主要是对一幅灰度图像rice.jpg进行一些处理,消除rice.jpg图像中的亮度不一致的背景,并使用阀值分割将修改后的图像转换为二值图像,使用轮廓检测返回图像中目标对象的个数以及统计属性。
#include <stdio.h> #include <cv.h> #include <highgui.h> #include <math.h> #pragma comment(lib, "cv.lib") #pragma comment(lib, "cxcore.lib") #pragma comment(lib, "highgui.lib") int main(int argc, char* argv[]) { IplImage *src = 0; //定义源图像指针 IplImage *tmp = 0; //定义临时图像指针 IplImage *src_back = 0; //定义源图像背景指针 IplImage *dst_gray = 0; //定义源文件去掉背景后的目标灰度图像指针 IplImage *dst_bw = 0; //定义源文件去掉背景后的目标二值图像指针 IplImage *dst_contours = 0; //定义轮廓图像指针 IplConvKernel *element = 0; //定义形态学结构指针 int Number_Object =0; //定义目标对象数量 int contour_area_tmp = 0; //定义目标对象面积临时寄存器 int contour_area_sum = 0; //定义目标所有对象面积的和 int contour_area_ave = 0; //定义目标对象面积平均值 int contour_area_max = 0; //定义目标对象面积最大值 CvMemStorage *stor = 0; CvSeq * cont = 0; CvContourScanner contour_scanner; CvSeq * a_contour= 0; //1.读取和显示图像 // the first command line parameter must be image file name if ( argc == 2 && (src = cvLoadImage(argv[1], -1))!=0 ) { ; } else { src = cvLoadImage("test.png", 0); } cvNamedWindow( "src", CV_WINDOW_AUTOSIZE ); cvShowImage( "src", src ); //cvSmooth(src, src, CV_MEDIAN, 3, 0, 0, 0); //中值滤波,消除小的噪声; //2.估计图像背景 tmp = cvCreateImage( cvGetSize(src), src->depth, src->nChannels); src_back = cvCreateImage( cvGetSize(src), src->depth, src->nChannels); //创建结构元素 element = cvCreateStructuringElementEx( 4, 4, 1, 1, CV_SHAPE_ELLIPSE, 0); //用该结构对源图象进行数学形态学的开操作后,估计背景亮度 cvErode( src, tmp, element, 10); cvDilate( tmp, src_back, element, 10); cvNamedWindow( "src_back", CV_WINDOW_AUTOSIZE ); cvShowImage( "src_back", src_back ); //3.从源图象中减区背景图像 dst_gray = cvCreateImage( cvGetSize(src), src->depth, src->nChannels); cvSub( src, src_back, dst_gray, 0); cvNamedWindow( "dst_gray", CV_WINDOW_AUTOSIZE ); cvShowImage( "dst_gray", dst_gray ); //4.使用阀值操作将图像转换为二值图像 dst_bw = cvCreateImage( cvGetSize(src), src->depth, src->nChannels); cvThreshold( dst_gray, dst_bw ,50, 255, CV_THRESH_BINARY ); //取阀值为50把图像转为二值图像 //cvAdaptiveThreshold( dst_gray, dst_bw, 255, CV_ADAPTIVE_THRESH_MEAN_C, CV_THRESH_BINARY, 3, 5 ); cvNamedWindow( "dst_bw", CV_WINDOW_AUTOSIZE ); cvShowImage( "dst_bw", dst_bw ); //5.检查图像中的目标对象数量 stor = cvCreateMemStorage(0); cont = cvCreateSeq(CV_SEQ_ELTYPE_POINT, sizeof(CvSeq), sizeof(CvPoint), stor); Number_Object = cvFindContours( dst_bw, stor, &cont, sizeof(CvContour), CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, cvPoint(0,0) ); //找到所有轮廓 printf("Number_Object: %d/n", Number_Object); //6.计算图像中对象的统计属性 dst_contours = cvCreateImage( cvGetSize(src), src->depth, src->nChannels); cvThreshold( dst_contours, dst_contours ,0, 255, CV_THRESH_BINARY ); //在画轮廓前先把图像变成白色 for(;cont;cont = cont->h_next) { cvDrawContours( dst_contours, cont, CV_RGB(255, 0, 0), CV_RGB(255, 0, 0), 0, 1, 8, cvPoint(0, 0) ); //绘制当前轮廓 contour_area_tmp = fabs(cvContourArea( cont, CV_WHOLE_SEQ )); //获取当前轮廓面积 if( contour_area_tmp > contour_area_max ) { contour_area_max = contour_area_tmp; //找到面积最大的轮廓 } contour_area_sum += contour_area_tmp; //求所有轮廓的面积和 } contour_area_ave = contour_area_sum/ Number_Object; //求出所有轮廓的平均值 printf("contour_area_ave: %d/n", contour_area_ave ); printf("contour_area_max: %d/n", contour_area_max ); cvNamedWindow( "dst_contours", CV_WINDOW_AUTOSIZE ); cvShowImage( "dst_contours", dst_contours ); cvWaitKey(-1); //等待退出 cvReleaseImage(&src); cvReleaseImage(&tmp); cvReleaseImage(&src_back); cvReleaseImage(&dst_gray); cvReleaseImage(&dst_bw); cvReleaseImage(&dst_contours); cvReleaseMemStorage(&stor); cvDestroyWindow( "src" ); cvDestroyWindow( "src_back" ); cvDestroyWindow( "dst_gray" ); cvDestroyWindow( "dst_bw" ); cvDestroyWindow( "dst_contours" ); //void cvDestroyAllWindows(void); return 0; }
http://www.opencv.org.cn/forum/viewtopic.php?t=1316
Malic -- Malib with csuFaceIdEval (and OpenCV)【人脸识别的程序】
http://malic.sourceforge.net/
不错的计算机视觉网站 http://www.visionopen.com/
IplImage类型图像像素数据的格式与对应的变量类型 http://www.opencv.org.cn/forum/viewtopic.php?t=547
深之JohnChen的专栏 OTSU方法计算图像二值化的自适应阈值;
http://blog.csdn.net/byxdaz/archive/2006/02/06/593039.aspx
对于高光补偿,建议看微软directx 10 新技术(或者是微软新技术展览里)里的高光恢复图像的相关内容;
实现DIB到IplImage的转换,使用 void cvSetData( CvArr* arr, void* data, int step );
http://www.opencv.org.cn/forum/viewtopic.php?t=721
计算出相机内参数,直接调用cvUndistort2进行图像校正;
http://www.opencv.org.cn/forum/viewtopic.php?t=754
使用IPP库提升OpenCV性能的教程:
1.OpenCV确实是在运行时自动加载这些优化库, 不需要运行cvUseOptimized()函数, 前提是库的相关路径注册了环境变量(之前我没注册, 所以没有加载成功).
可运行如下程序进行检验:
const char* opencv_libraries = 0;
const char* addon_modules = 0;
cvGetModuleInfo( 0, &opencv_libraries,&addon_modules );
printf( "OpenCV: %s/r/nAdd-on Modules: %s/r/n.", opencv_libraries, addon_modules);
如果自动加载成功会输出:
OpenCV: cxcore: 1.0.0, cv: 1.0.0
Add-on Modules: ippcv-5.1.dll, ippi-5.1.dll, ipps-5.1.dll, ippvm-5.1.dll, ippcc-5.1.dll, mkl_p4.dll
此时再运行cvUseOptimized(1), 通过查看返回值, 可以知道有多少个函数被优化。
2.不同函数优化的程度不一。
用几个函数测试了一下加载优化库后的优化程度:
系统: P4(2.6G) 512MB XP VC6
测试图像: 768×576 8UC1
循环100次
测试函数 cvSmooth(CV_GAUSSIAN,31*31) 2493ms(with IPP) 5498ms(without IPP)
测试函数 cvSobel(7*7) 1674ms(with IPP) 1672ms(without IPP)
测试函数 cvCanny(3*3) 2901ms(with IPP) 3385ms(without IPP)
可以看出不同函数优化的程度不一样, cvSmooth优化程度很高, 性能提升50%多, cvSobel基本没有变化, 网上有的老外还说用了IPP之后速度下降了 .
所以究竟用不用IPP(199美元呢), 还得各位测试一下自己的程序, 好在现在还有Evaluation版的IPP可以用。要是OpenCV下个版本能提供一份儿各个函数优化表就好了.
http://www.opencv.org.cn/forum/viewtopic.php?t=782
关于HSV色彩空间的讨论;
http://www.opencv.org.cn/forum/viewtopic.php?t=640
DIB指针转换为IplImage指针;
IplImage* SnapImage = cvCreateImageHeader( cvSize IMAGE_WIDTH, IMAGE_HEIGHT), IPL_DEPTH_8U, IMAGE_CHANNEL );
SnapImage->origin = 1;
IplImage*
char* data= new char [IMAGE_HEIGHT*IMAGE_WIDTH*IMAGE_CHANNEL];
SnapImage->imageData = data;
memcpy(SnapImage->imageData,pImageBuffer,IMAGE_HEIGHT*IMAGE_WIDTH*IMAGE_CHANNEL);
delete []data;
http://www.opencv.org.cn/forum/viewtopic.php?t=2110