VC编程实现数字图像的边缘检测
数字图像的边缘检测是图像分割、目标区域的识别、区域形状提取等图像分析领域十分重要的基础,图像理解和分析的第一步往往就是边缘检测,目前它以成为机器视觉研究领域最活跃的课题之一,在工程应用中占有十分重要的地位。本文向读者简单介绍一下这个技术,并给出了在Visual C++环境下实现的代码。
所谓边缘就是指图像局部亮度变化最显著的部分,它是检测图像局部变化显著变化的最基本的运算。对于数字图像,图像灰度灰度值的显著变化可以用梯度来表示,以边缘检测Sobel算子为例来讲述数字图像处理中边缘检测的实现:
对于数字图像,可以用一阶差分代替一阶微分;
△xf(x,y)=f(x,y)-f(x-1,y);
△yf(x,y)=f(x,y)-f(x,y-1)
求梯度时对于平方和运算及开方运算,可以用两个分量的绝对值之和表示,即:
G[f(x,y)]={[△xf(x,y)] +[△yf(x,y)] } |△xf(x,y)|+|△yf(x,y)|;
Sobel梯度算子是先做成加权平均,再微分,然后求梯度,即:
△xf(x,y)= f(x-1,y+1) + 2f(x,y+1) + f(x+1,y+1)- f(x-1,y-1) - 2f(x,y-1) - f(x+1,y-1);
△yf(x,y)= f(x-1,y-1) + 2f(x-1,y) + f(x-1,y+1)- f(x+1,y-1) - 2f(x+1,y) - f(x+1,y+1);
G[f(x,y)]=|△xf(x,y)|+|△yf(x,y)|;
上述各式中的像素之间的关系见图
f(x-1,y-1) | f(x,y-1) | f(x+1,y-1) |
f(x-1,y) | f(x,y) | f(x+1,y) |
f(x-1,y+1) | f(x,y+1) | f(x+1,y+1) |
我在视图类中定义了响应菜单命令的边缘检测Sobel算子实现灰度图像边缘检测的函数:
void CDibView::OnMENUSobel()
//灰度图像数据的获得参见天极网9.10日发表的拙作//VC数字图像处理一文
{
HANDLE data1handle;
LPBITMAPINFOHEADER lpBi;
CDibDoc *pDoc=GetDocument();
HDIB hdib;
unsigned char *hData;
unsigned char *data;
hdib=pDoc->m_hDIB;
BeginWaitCursor();
lpBi=(LPBITMAPINFOHEADER)GlobalLock((HGLOBAL)hdib);
hData= lpbi +* (LPDWORD)lpbi + 256*sizeof(RGBQUAD);
//得到指向位图像素值的指针
pDoc->SetModifiedFlag(TRUE);//设修改标志为"TRUE"
data1handle=GlobalAlloc(GMEM_SHARE,WIDTHBYTES(lpBi->biWidth*8)*lpBi->biHeight);
//申请存放处理后的像素值的缓冲区
data=(unsigned char*)GlobalLock((HGLOBAL)data1handle);
AfxGetApp()->BeginWaitCursor();
int i,j,buf,buf1,buf2;
for( j=0; jbiHeight; j++)//以下循环求(x,y)位置的灰度值
for( i=0; ibiWidth; i++)
{
if(((i-1)>=0)&&((i+1)biWidth)&&((j-1)>=0)&&((j+1)biHeight))
{//对于图像四周边界处的向素点不处理
buf1=(int)*(hData+(i+1)*WIDTHBYTES(lpBi->biWidth*8)+(j-1))
+2*(int)*(hData+(i+1)*WIDTHBYTES(lpBi->biWidth*8)+(j))
+(int)(int)*(hData+(i+1)*WIDTHBYTES(lpBi->biWidth*8)+(j+1));
buf1=buf1-(int)(int)*(hData+(i-1)*WIDTHBYTES(lpBi->biWidth*8)+(j-1))
-2*(int)(int)*(hData+(i-1)*WIDTHBYTES(lpBi->biWidth*8)+(j))
-(int)(int)*(hData+(i-1)*WIDTHBYTES(lpBi->biWidth*8)+(j+1));
//x方向加权微分
buf2=(int)(int)*(hData+(i-1)*WIDTHBYTES(lpBi->biWidth*8)+(j+1))
+2*(int)(int)*(hData+(i)*WIDTHBYTES(lpBi->biWidth*8)+(j+1))
+(int)(int)*(hData+(i+1)*WIDTHBYTES(lpBi->biWidth*8)+(j+1));
buf2=buf2-(int)(int)*(hData+(i-1)*WIDTHBYTES(lpBi->biWidth*8)+(j-1))
-2*(int)(int)*(hData+(i)*WIDTHBYTES(lpBi->biWidth*8)+(j-1))
-(int)(int)*(hData+(i+1)*WIDTHBYTES(lpBi->biWidth*8)+(j-1));
//y方向加权微分
buf=abs(buf1)+abs(buf2);//求梯度
if(buf>255) buf=255;
if(buf<0){buf=0;
*(data+i*WIDTHBYTES(lpBi->biWidth*8)+j)=(BYTE)buf;
}
else *(data+i*lpBi->biWidth+j)=(BYTE)0;
}
for( j=0; jbiHeight; j++)
for( i=0; ibiWidth; i++)
*(hData+i*WIDTHBYTES(lpBi->biWidth*8)+j)=*(data+i*WIDTHBYTES(lpBi->biWidth*8)+j);
//处理后的数据写回原缓冲区
AfxGetApp()->EndWaitCursor();
GlobalUnlock((HGLOBAL)hdib);
GlobalUnlock(data1handle);
GlobalFree(date1handle);
EndWaitCursor();
Invalidate(TRUE);
}
上述的数学分析读者可能看起来有些吃力,不过不要紧,对与边缘检测,大家只要知道有若干个检测模板(既边缘检测矩阵)可以直接实现检测功能就行了,现在将常用的检测实现公式列出如下:
Roberts算子:G[i,i]=|f[i,j]-f[i+1,j+1]|+|f[i+1,j]-f[i,j+1]|;
Sobe算子:G[i,i]=|f[i-1,j+1]+2f[i,j+1]+f[i+1,j+1]-f[i-1,j-1]-2f[i,j-1]-f[i+1,j-1]|
+|f[i-1,j-1]+2f[i-1,j]+f[i-1,j+1]-f[i+1,j-1]-2f[i+1,j]-f[i+1,j+1]|;
拉普拉斯算子:G[I,j]=|f[i+1,j]+f[i-1,j]+f(i,j+1)+f[i,j-1]-4f[i,j]|;
其中G[i,j]表示处理后(i,j)点的灰度值,f[i,j]表示处理前该点的灰度值。
笔者开发的该图像处理程序在Windows2000环境下编译通过,下面图2给出了依据图像处理算法得到的图像二值化、高通滤波、Sobel边缘算子的处理结果,读者需要注意的是我在进行Sobel算子进行处理后,又对它进行了二值化处理,这才得到C图。关于如何实现二值化图像,我会后续撰文对相关知识进行介绍。
==============================================================
void CreatGauss(double sigma, double **pdKernel, int *pnWidowSize);
void GaussianSmooth(SIZE sz, LPBYTE pGray, LPBYTE pResult, double sigma);
void Grad(SIZE sz, LPBYTE pGray, int *pGradX, int *pGradY, int *pMag);
void NonmaxSuppress(int *pMag, int *pGradX, int *pGradY, SIZE sz, LPBYTE pNSRst);
void EstimateThreshold(int *pMag, SIZE sz, int *pThrHigh, int *pThrLow, LPBYTE pGray,
double dRatHigh, double dRatLow);
void Hysteresis(int *pMag, SIZE sz, double dRatLow, double dRatHigh, LPBYTE pResult);
void TraceEdge(int y, int x, int nThrLow, LPBYTE pResult, int *pMag, SIZE sz);
void Canny(LPBYTE pGray, SIZE sz, double sigma, double dRatLow,
double dRatHigh, LPBYTE pResult);
#include "afx.h"
#include "math.h"
#include "canny.h"
// 一维高斯分布函数,用于平滑函数中生成的高斯滤波系数
void CreatGauss(double sigma, double **pdKernel, int *pnWidowSize)
{
LONG i;
//数组中心点
int nCenter;
//数组中一点到中心点距离
double dDis;
//中间变量
double dValue;
double dSum;
dSum = 0;
// [-3*sigma,3*sigma] 以内数据,会覆盖绝大部分滤波系数
*pnWidowSize = 1+ 2*ceil(3*sigma);
nCenter = (*pnWidowSize)/2;
*pdKernel = new double[*pnWidowSize];
//生成高斯数据
for(i=0;i<(*pnWidowSize);i++)
{
dDis = double(i - nCenter);
dValue = exp(-(1/2)*dDis*dDis/(sigma*sigma))/(sqrt(2*3.1415926)*sigma);
(*pdKernel)[i] = dValue;
dSum+=dValue;
}
//归一化
for(i=0;i<(*pnWidowSize);i++)
{
(*pdKernel)[i]/=dSum;
}
}
//用高斯滤波器平滑原图像
void GaussianSmooth(SIZE sz, LPBYTE pGray, LPBYTE pResult, double sigma)
{
LONG x, y;
LONG i;
//高斯滤波器长度
int nWindowSize;
//窗口长度
int nLen;
//一维高斯滤波器
double *pdKernel;
//高斯系数与图像数据的点乘
double dDotMul;
//滤波系数总和
double dWeightSum;
double *pdTemp;
pdTemp = new double[sz.cx*sz.cy];
//产生一维高斯数据
CreatGauss(sigma, &pdKernel, &nWindowSize);
nLen = nWindowSize/2;
//x方向滤波
for(y=0;y<sz.cy;y++)
{
for(x=0;x<sz.cx;x++)
{
dDotMul = 0;
dWeightSum = 0;
for(i=(-nLen);i<=nLen;i++)
{
//判断是否在图像内部
if((i+x)>=0 && (i+x)<sz.cx)
{
dDotMul+=(double)pGray[y*sz.cx+(i+x)] * pdKernel[nLen+i];
dWeightSum += pdKernel[nLen+i];
}
}
pdTemp[y*sz.cx+x] = dDotMul/dWeightSum;
}
}
//y方向滤波
for(x=0; x<sz.cx;x++)
{
for(y=0; y<sz.cy; y++)
{
dDotMul = 0;
dWeightSum = 0;
for(i=(-nLen);i<=nLen;i++)
{
if((i+y)>=0 && (i+y)< sz.cy)
{
dDotMul += (double)pdTemp[(y+i)*sz.cx+x]*pdKernel[nLen+i];
dWeightSum += pdKernel[nLen+i];
}
}
pResult[y*sz.cx+x] = (unsigned char)dDotMul/dWeightSum;
}
}
delete []pdKernel;
pdKernel = NULL;
delete []pdTemp;
pdTemp = NULL;
}
// 方向导数,求梯度
void Grad(SIZE sz, LPBYTE pGray,int *pGradX, int *pGradY, int *pMag)
{
LONG y,x;
//x方向的方向导数
for(y=1;y<sz.cy-1;y++)
{
for(x=1;x<sz.cx-1;x++)
{
pGradX[y*sz.cx +x] = (int)( pGray[y*sz.cx+x+1]-pGray[y*sz.cx+ x-1] );
}
}
//y方向方向导数
for(x=1;x<sz.cx-1;x++)
{
for(y=1;y<sz.cy-1;y++)
{
pGradY[y*sz.cx +x] = (int)(pGray[(y+1)*sz.cx +x] - pGray[(y-1)*sz.cx +x]);
}
}
//求梯度
//中间变量
double dSqt1;
double dSqt2;
for(y=0; y<sz.cy; y++)
{
for(x=0; x<sz.cx; x++)
{
//二阶范数求梯度
dSqt1 = pGradX[y*sz.cx + x]*pGradX[y*sz.cx + x];
dSqt2 = pGradY[y*sz.cx + x]*pGradY[y*sz.cx + x];
pMag[y*sz.cx+x] = (int)(sqrt(dSqt1+dSqt2)+0.5);
}
}
}
//非最大抑制
void NonmaxSuppress(int *pMag, int *pGradX, int *pGradY, SIZE sz, LPBYTE pNSRst)
{
LONG y,x;
int nPos;
//梯度分量
int gx;
int gy;
//中间变量
int g1,g2,g3,g4;
double weight;
double dTmp,dTmp1,dTmp2;
//设置图像边缘为不可能的分界点
for(x=0;x<sz.cx;x++)
{
pNSRst[x] = 0;
pNSRst[(sz.cy-1)*sz.cx+x] = 0;
}
for(y=0;y<sz.cy;y++)
{
pNSRst[y*sz.cx] = 0;
pNSRst[y*sz.cx + sz.cx-1] = 0;
}
for(y=1;y<sz.cy-1;y++)
{
for(x=1;x<sz.cx-1;x++)
{
//当前点
nPos = y*sz.cx + x;
//如果当前像素梯度幅度为0,则不是边界点
if(pMag[nPos] == 0)
{
pNSRst[nPos] = 0;
}
else
{
//当前点的梯度幅度
dTmp = pMag[nPos];
//x,y方向导数
gx = pGradX[nPos];
gy = pGradY[nPos];
//如果方向导数y分量比x分量大,说明导数方向趋向于y分量
if(abs(gy) > abs(gx))
{
//计算插值比例
weight = fabs(gx)/fabs(gy);
g2 = pMag[nPos-sz.cx];
g4 = pMag[nPos+sz.cx];
//如果x,y两个方向导数的符号相同
//C 为当前像素,与g1-g4 的位置关系为:
//g1 g2
// C
// g4 g3
if(gx*gy>0)
{
g1 = pMag[nPos-sz.cx-1];
g3 = pMag[nPos+sz.cx+1];
}
//如果x,y两个方向的方向导数方向相反
//C是当前像素,与g1-g4的关系为:
// g2 g1
// C
// g3 g4
else
{
g1 = pMag[nPos-sz.cx+1];
g3 = pMag[nPos+sz.cx-1];
}
}
//如果方向导数x分量比y分量大,说明导数的方向趋向于x分量
else
{
//插值比例
weight = fabs(gy)/fabs(gx);
g2 = pMag[nPos+1];
g4 = pMag[nPos-1];
//如果x,y两个方向的方向导数符号相同
//当前像素C与 g1-g4的关系为
// g3
// g4 C g2
// g1
if(gx * gy > 0)
{
g1 = pMag[nPos+sz.cx+1];
g3 = pMag[nPos-sz.cx-1];
}
//如果x,y两个方向导数的方向相反
// C与g1-g4的关系为
// g1
// g4 C g2
// g3
else
{
g1 = pMag[nPos-sz.cx+1];
g3 = pMag[nPos+sz.cx-1];
}
}
//利用 g1-g4 对梯度进行插值
{
dTmp1 = weight*g1 + (1-weight)*g2;
dTmp2 = weight*g3 + (1-weight)*g4;
//当前像素的梯度是局部的最大值
//该点可能是边界点
if(dTmp>=dTmp1 && dTmp>=dTmp2)
{
pNSRst[nPos] = 128;
}
else
{
//不可能是边界点
pNSRst[nPos] = 0;
}
}
}
}
}
}
// 统计pMag的直方图,判定阈值
void EstimateThreshold(int *pMag, SIZE sz, int *pThrHigh, int *pThrLow, LPBYTE pGray,
double dRatHigh, double dRatLow)
{
LONG y,x,k;
//该数组的大小和梯度值的范围有关,如果采用本程序的算法
//那么梯度的范围不会超过pow(2,10)
int nHist[256];
//可能边界数
int nEdgeNum;
//最大梯度数
int nMaxMag;
int nHighCount;
nMaxMag = 0;
//初始化
for(k=0;k<256;k++)
{
nHist[k] = 0;
}
//统计直方图,利用直方图计算阈值
for(y=0;y<sz.cy;y++)
{
for(x=0;x<sz.cx;x++)
{
if(pGray[y*sz.cx+x]==128)
{
nHist[pMag[y*sz.cx+x]]++;
}
}
}
nEdgeNum = nHist[0];
nMaxMag = 0;
//统计经过“非最大值抑制”后有多少像素
for(k=1;k<256;k++)
{
if(nHist[k] != 0)
{
nMaxMag = k;
}
//梯度为0的点是不可能为边界点的
//经过non-maximum suppression后有多少像素
nEdgeNum += nHist[k];
}
//梯度比高阈值*pThrHigh 小的像素点总书目
nHighCount = (int)(dRatHigh * nEdgeNum + 0.5);
k=1;
nEdgeNum = nHist[1];
//计算高阈值
while((k<(nMaxMag-1)) && (nEdgeNum < nHighCount))
{
k++;
nEdgeNum += nHist[k];
}
*pThrHigh = k;
//低阈值
*pThrLow = (int)((*pThrHigh) * dRatLow + 0.5);
}
//利用函数寻找边界起点
void Hysteresis(int *pMag, SIZE sz, double dRatLow, double dRatHigh, LPBYTE pResult)
{
LONG y,x;
int nThrHigh,nThrLow;
int nPos;
//估计TraceEdge 函数需要的低阈值,以及Hysteresis函数使用的高阈值
EstimateThreshold(pMag, sz,&nThrHigh,&nThrLow,pResult,dRatHigh,dRatLow);
//寻找大于dThrHigh的点,这些点用来当作边界点,
//然后用TraceEdge函数跟踪该点对应的边界
for(y=0;y<sz.cy;y++)
{
for(x=0;x<sz.cx;x++)
{
nPos = y*sz.cx + x;
//如果该像素是可能的边界点,并且梯度大于高阈值,
//该像素作为一个边界的起点
if((pResult[nPos]==128) && (pMag[nPos] >= nThrHigh))
{
//设置该点为边界点
pResult[nPos] = 255;
TraceEdge(y,x,nThrLow,pResult,pMag,sz);
}
}
}
//其他点已经不可能为边界点
for(y=0;y<sz.cy;y++)
{
for(x=0;x<sz.cx;x++)
{
nPos = y*sz.cx + x;
if(pResult[nPos] != 255)
{
pResult[nPos] = 0;
}
}
}
}
//根据Hysteresis 执行的结果,从一个像素点开始搜索,搜索以该像素点为边界起点的一条边界的
//一条边界的所有边界点,函数采用了递归算法
// 从(x,y)坐标出发,进行边界点的跟踪,跟踪只考虑pResult中没有处理并且可能是边界
// 点的像素(=128),像素值为0表明该点不可能是边界点,像素值为255表明该点已经是边界点
void TraceEdge(int y, int x, int nThrLow, LPBYTE pResult, int *pMag, SIZE sz)
{
//对8邻域像素进行查询
int xNum[8] = {1,1,0,-1,-1,-1,0,1};
int yNum[8] = {0,1,1,1,0,-1,-1,-1};
LONG yy,xx,k;
for(k=0;k<8;k++)
{
yy = y+yNum[k];
xx = x+xNum[k];
if(pResult[yy*sz.cx+xx]==128 && pMag[yy*sz.cx+xx]>=nThrLow )
{
//该点设为边界点
pResult[yy*sz.cx+xx] = 255;
//以该点为中心再进行跟踪
TraceEdge(yy,xx,nThrLow,pResult,pMag,sz);
}
}
}
// Canny算子
void Canny(LPBYTE pGray, SIZE sz, double sigma, double dRatLow,
double dRatHigh, LPBYTE pResult)
{
//经过高斯滤波后的图像
LPBYTE pGaussSmooth;
pGaussSmooth = new unsigned char[sz.cx*sz.cy];
//x方向导数的指针
int *pGradX;
pGradX = new int[sz.cx*sz.cy];
//y方向
int *pGradY;
pGradY = new int[sz.cx*sz.cy];
//梯度的幅度
int *pGradMag;
pGradMag = new int[sz.cx*sz.cy];
//对原图高斯滤波
GaussianSmooth(sz,pGray,pGaussSmooth,sigma);
//计算方向导数和梯度的幅度
Grad(sz,pGaussSmooth,pGradX,pGradY,pGradMag);
//应用非最大抑制
NonmaxSuppress(pGradMag,pGradX,pGradY,sz,pResult);
//应用Hysteresis,找到所有边界
Hysteresis(pGradMag,sz,dRatLow,dRatHigh,pResult);
delete[] pGradX;
pGradX = NULL;
delete[] pGradY;
pGradY = NULL;
delete[] pGradMag;
pGradMag = NULL;
delete[] pGaussSmooth;
pGaussSmooth = NULL;
}
/*
void CChildWnd::OnCanny()
{
if (! m_fOpenFile)
{
return;
}
m_fDone = TRUE;
RGBToGray(szImg, aRGB, aGray, BPP);
Canny(aGray,szImg,0.1,0.9,0.76,aBinImg);
ShowGrayImage("l",szImg,aBinImg);
}
//*/