.Net多线程总结(一)
.Net提供了许多多线程编程工具,可能是因为太多了,所以掌握起来总是有一些头疼,我在这里讲讲我总结的一些多线程编程的经验,希望对大家有帮助
不需要传递参数,也不需要返回参数
我们知道启动一个线程最直观的办法是使用Thread类,具体步骤如下
ThreadStart threadStart = new ThreadStart(Calculate); Thread thread = new Thread(threadStart); thread.Start(); public void Calculate(){ double Diameter = 0.5 ; Console.Write( " The perimeter Of Circle with a Diameter of {0} is {1} " Diameter,Diameter * Math.PI); }
例1
上面我们用定义了一个ThreadStart类型的委托,这个委托制定了线程需要执行的方法:Calculate,在这个方法里计算了一个直径为0.5的圆的周长,并输出.这就构成了最简单的多线程的例子,在很多情况下这就够用了,然后ThreadStart这个委托定义为void ThreadStart(),也就是说,所执行的方法不能有参数,这显然是个很大的不足,为了弥补这个缺陷,聪明的程序员想出了许多好的方法,我们将在需要传递多个参数一节中进行介绍,这里我们先介绍.Net为了解决这个问题而设定的另外一个委托:就是ParameterizedThreadStart ,我会在下面详细讲述
需要传递单个参数
ParameterThreadStart的定义为void ParameterizedThreadStart( object state) ?? 使用这个这个委托定义的线程的启动函数可以接受一个输入参数,具体例子如下 ParameterizedThreadStart threadStart = new ParameterizedThreadStart(Calculate) Thread thread = new Thread() thread.Start( 0.9 ); public void Calculate( object arg){ double Diameter = double (arg); Console.Write( " The perimeter Of Circle with a Diameter of {0} is {1} " Diameter,Diameter * Math.PI); }
例2
Calculate方法有一个为object类型的参数,虽然只有一个参数,而且还是object类型的,使用的时候尚需要类型转换,但是好在可以有参数了,并且通过把多个参数组合到一个类中,然后把这个类的实例作为参数传递,就可以实现多个参数传递
需要传递多个参数
虽然通过把需要的参数包装到一个类中,委托ParameterizedThreadStart就可以传递多个参数,但是由于这个委托的传入参数是object,所以不可避免的需要进行参数转换,下面还有几个常用的参数传递方法,让我们来一一看来
使用专门的线程类
这是许多程序员爱使用的经典模式,简单来说,就是把需要另起线程执行的方法,和他需要的参数放到一个类中,参数作为了类的属性,调用时声明此类的实例,然后初始化属性,方法执行时直接使用类里初始化好的属性来执行,这样方法本身就可以不需要参数,而又起到了多参数传递的效果,于是使用本文最开始提到的不带参数的ThreadStart委托就可以了,并且由于需要执行的方法和参数都放在一个类中,充分体现了面向对象的特点.具体方法如下
还是计算面积的方法的例子,我们把这个方法用一个类包装起来,输入参数Diameter(直径)是这个类的一个字段
public class MyThread { public double Diameter = 10 ; public double Result = 0 ; public MyThread( int Diameter) { this .Diameter = Diameter; } public void Calculate() { Console.WriteLine( " Calculate Start " ); Thread.Sleep( 2000 ); Result = Diameter * Math.PI;; Console.WriteLine( " Calculate End, Diameter is {0},Result is {1} " , this .Diameter, Result); } } MyThread t = new MyThread( 5.0 ); ThreadStart threadStart = new ThreadStart(t.Calculate) Thread thread = new Thread(threadStart); thread.Start();
例3
这种方法把参数传递变成了属性共享,想传递多少个变量都可以,从封装上讲,把逻辑和逻辑涉及的数据封装在一起,也很不错,这个方法还有一个聪明的变体,利用了匿名方法,这种变体连独立的类都省掉了,我现在给出这个方法
double Diameter = 6 ; double Result = 0 ; Thread ta = new Thread( new ThreadStart( delegate () { Thread.Sleep( 2000 ); Result = Diameter * Math.PI; Console.WriteLine( " 匿名 Calculate End, Diameter is {0},Result is {1} " , Diameter, Result); ; })); ta.Start(); 例4
这个方法和上例道理相同,都是把参数传递变成了对变量的调用,从而取消了参数传递,但是,后者充分利用了匿名方法的一个性质,就是可以直接使用当前上下文的局部变量,比如委托中的Diameter,和Result.当然,这样做的缺点是如果匿名方法太长,程序的可读性会降低,所以一般很少有人这样做,这里给出这个方法供大家参考,关于匿名委托的资料可以参见
聪明的读者肯定想,既然可以用字段来传入变量,当然也可以用字段传出变量,比如在上面两个例子里我们看到计算结果都写进了一个叫Result(加亮的地方)的变量里,我们直接访问这个变量不就可以得到计算结果了吗?
这样做有一个致命的问题:既然是异步执行,主线程怎么知道分线程什么时候完成了计算呢?比如上两个例子中,我们的线程都睡眠了2000毫秒,然后才进行计算,那么如果主线程在没有完成计算前访问Result,只能得到一个0值.于是我们就有了下面的一系列解决方法.
需要传递参数且需要返回参数
刚才说到主线程需要知道子线程什么时候执行完成,可以使用Thread.ThreadState枚举来判断
当线程的ThreadState==ThreadState.Stop时,一般就说明线程完成了工作,这时结果就可用了,如果不是这个状态,就继续执行别的工作,或者等待一会,然后再尝试.倘若需要等有多个子线程需的返回,并且需要用他们的结果来进行进异步计算,那就叫做线程同步了,下面我们介绍另外一种我比较推荐的方法,能够自定义参数个数,并且返回数据,而且使用起来也相对方便
使用委托的异步调用方法和回调
首先我们要把需要异步调用的方法定义为一个委托,然后利用BeginInvoke来异步调用,BeginInvoke的第一个参数就是直径,第二个是当线程执行完毕后的调用的方法
delegate double CalculateMethod( double Diameter); static CalculateMethod calcMethod; double result = 0 ; static void Main( string [] args) { calcMethod = new CalculateMethod(Calculate); calcMethod.BeginInvoke( 5 , new AsyncCallback(TaskFinished), null ); } /// <summary> /// 线程调用的函数 /// <summary> public static double Calculate( double Diameter) { return Diameter * Math.PI; } /// <summary> /// 线程完成之后回调的函数 /// <summary> public static void TaskFinished(IAsyncResult result) { result = calcMethod.EndInvoke(result); }
例5
注意,再线程执行完毕后执行的方法TaskFinished中,我们使用了EndInvoke来取得这个函数的返回值
线程池
线程虽然是个好东西,但是也是个资源消耗大户,许多时候,我们需要用多线程,但是又不希望线程的数量过多,这就是线程池的作用,.Net为我们提供了现成的线程池ThreadPool,他的使用如下
WaitCallback w = new WaitCallback(Calculate); ThreadPool.QueueUserWorkItem(w, 1.0 ); ThreadPool.QueueUserWorkItem(w, 2.0 ); ThreadPool.QueueUserWorkItem(w, 3.0 ); ThreadPool.QueueUserWorkItem(w, 4.0 ); public static void Calculate( double Diameter) { return Diameter * Math.PI; }
例6
首先定义一个WaitCallback委托,WaitCallback的格式是void WaitCallback(object state),也就是说你的方法必须符合这个格式,接着调用QueueUserWorkItem,将这个任务加入线程池,当县城池有空闲线时,将会调度并运行你的代码
每一个进程都有一个线程池,线程池的默认大小是25,我们可以通过SetMaxThreads方法来设置其最大值.
[注]由于每个进程只有一个线程池,所以如果是在iis进程,或者sqlserver的进程中使用线程池,并且需要设置线程池的最大容量的话,会影响到iis进程或sql进程,所以这两种情况下要特别小心
控制权
在和大家交谈的时候我发现凡是习惯了面向对象思维的同事,总是对多线程情况下的执行上下文很困扰,比如例5中,主程序启动了子线程执行Calculate方法,执行完毕后回调TaskFinished,假如主线程id是1,子线程id是2,那么Calculate肯定是在id=2的线程中执行,那么他的回调函数TaskFinished呢? 同样也是在id=2的线程上下文中执行,不信你输出线程id试试,这通常不是什么问题,但是当我们需要在Winform编程中使用子线程时,就有可能会引起问题了,我们将在下面讲这个问题
窗体程序多线程编程的特殊性
当我们把例5的回调代码稍加修改,搬到winform里面,就可以看到问题所在了
public static void TaskFinished(IAsyncResult result) { result = calcMethod.EndInvoke(result); this .TextBox1.Text = result; }
程序的原意是在线程执行完毕后讲结果写入一个TextBox,然而当程序执行到this.TextBox1.Text=result这里的时候就抱错了.原来WinForm对线程有很严格的要求,除了创建这些控件的线程,其他线程想跨线程访问WinForm上的控件的属性和方法是不允许(除了几个特殊属性),在有的版本系统上,比如XP,对这个问题进行了处理,跨线程控件访问可以被执行,但是大多数windows系统都是不可以的,那么如果我们确实需要跨线程修改控件属性,或者调用控件的方法,就必须用到控件的一个方法Invoke,这个方法可以把执行上下文切换回创建这些控件的线程,具体操作如下
delegate void changeText( string result); public static void TaskFinished(IAsyncResult result) { result = calcMethod.EndInvoke(result); this .BeginInvoke( new changeText( this .textBox1.AppendText),t.Result.ToString()) }
由于委托中必须使用方法,所以我用AppendTex方法t,而不是直接设置Text属性,你如果想设置text属性,就必须自己包装一个方法,然后连接到委托了
.Net多线程总结(二)-BackgroundWorker
上篇文章介绍了多种线程的创建方式,以及winform在多线程编程时的特殊性,这篇我们来介绍一下异步编程的经典模式和微软对其的实现
微软推荐的异步操作模型是事件模型,也即用子线程通过事件来通知调用者自己的工作状态,也就是设计模式中的observer模式,也可以看成是上文中线程类的扩展,最后实现后调用效果类似于
MyThread thread = new MyThread() thread.Work += new ThreadWork(Calculate) thread.WorkComplete += new WorkComplete(DisplayResult) Calculate( object sender, EventArgs e)){ .... } DisplayResult( object sender, EventArgs e)){ ... }
<例一>
这个话题已经有许多很好的文章,大家参考http://www.cnblogs.com/net66/archive/2005/08/03/206132.html,其作者在文章后附加有示例项目,项目中的线程类实现了事件发送,线程终止,报告任务进度等一系列必要的功能,大家可以自己去查看代码,我就不赘述了,我主要谈微软对这个模式的实现BackgroundWorker
上篇文章里说到了控制权的问题,上面的模型在winform下使用有个问题就是执行上下文的问题,在回调函数中(比如<例一>中的DisplayResult中),我们不得不使用BeginInvoke,才能调用ui线程创建的控件的属性和方法,
比如在上面net66的例子里
// 创建线程对象 _Task = new newasynchui(); // 挂接进度条修改事件 _Task.TaskProgressChanged += new TaskEventHandler( OnTaskProgressChanged1 ); // 在UI线程,负责更新进度条 private void OnTaskProgressChanged1( object sender,TaskEventArgs e ) { if (InvokeRequired ) // 不在UI线程上,异步调用 { TaskEventHandler TPChanged1 = new TaskEventHandler( OnTaskProgressChanged1 ); this .BeginInvoke(TPChanged1, new object [] {sender,e}); Console.WriteLine( " InvokeRequired=true " ); } else { progressBar.Value = e.Progress; } }
<例二>
可以看到,在函数里面用到了
if(InvokeRequired)
{...BeginInvoke....}
else
{....}
这个模式来保证方法在多线程和单线程下都可以运行,所以线程逻辑和界面逻辑混合在了一起,以至把以前很简单的只需要一句话的任务:progressBar.Value = e.Progress;搞的很复杂,如果线程类作为公共库来提供,对编写事件的人要求会相对较高,那么有什么更好的办法呢?
其实在.Net2.0中微软自己实现这个模式,制作了Backgroundworker这个类,他可以解决上面这些问题,我们先来看看他的使用方法
System.ComponentModel.BackgroundWorker bw = new System.ComponentModel.BackgroundWorker(); // 定义需要在子线程中干的事情 bw.DoWork += new System.ComponentModel.DoWorkEventHandler(bw_DoWork); // 定义执行完毕后需要做的事情 bw.RunWorkerCompleted += new System.ComponentModel.RunWorkerCompletedEventHandler(bw_RunWorkerCompleted); // 开始执行 bw.RunWorkerAsync(); static void bw_RunWorkerCompleted( object sender, System.ComponentModel.RunWorkerCompletedEventArgs e) { MessageBox.Show( " Complete " + Thread.CurrentThread.ManagedThreadId.ToString()); } static void bw_DoWork( object sender, System.ComponentModel.DoWorkEventArgs e) { MessageBox.Show(Thread.CurrentThread.ManagedThreadId); }
<例三>
注意我在两个函数中输出了当前线程的ID,当我们在WindowsForm程序中执行上述代码时,我们惊奇的发现,bw_RunWorkerCompleted这个回调函数居然是运行在UI线程中的,也就是说在这个方法中我们不用再使用Invoke和BeginInvoke调用winform中的控件了, 更让我奇怪的是,如果是在ConsoleApplication中同样运行这段代码,那么bw_RunWorkerCompleted输出的线程id和主线程id就并不相同.
那么BackgroundWorker到底是怎么实现跨线程封送的呢?
阅读一下这个类的代码,我们发现他借助了AsyncOperation.Post(SendOrPostCallback d, object arg)
在winform下使用这个函数,就可以使得由SendOrPostCallback定义被封送会UI线程,聪明的博友可以用这个方法来实现自己的BackgroundWorker.
继续查看下去,发现关键在于AsyncOperation的syncContext字段,这是一个SynchronizationContext类型的对象,而这个对象的Post方法具体实现了封送,当我继续查看
SynchronizationContext.Post方法时,里面简单的令人难以执行
public virtual void Post(SendOrPostCallback d, object state) { ThreadPool.QueueUserWorkItem( new WaitCallback(d.Invoke), state); }
这是怎么回事情呢,线程池本省并不具备线程封送的能力啊
联想到在Winform程序和Console程序下程序的行为是不同的,而且SynchronizationContext的Post方法是一个virtual方法,我猜测这个方法可能被继承自他的类重写了
查询Msdn,果然发现在这个类有两个子类,其中一个就是WindowsFormsSynchronizationContext,我们来看看这个类的Post方法
public override void Post(SendOrPostCallback d, object state) { if ( this .controlToSendTo != null ) { this .controlToSendTo.BeginInvoke(d, new object [] { state }); } }
哈哈,又是熟悉的beginInvoke,原来控制台程序和Winform程序加载的SynchronizationContext是不同的,所以行为才有所不同,通过简单的测试,我们可以看到控制台程序直接使用基类(SynchronizationContext),而winform程序使用这个WindowsFormsSynchronizationContext的Post方法把方法调用封送到控件的线程.
总结:
同事这个类还提供了进度改变事件,允许用户终止线程,功能全面,内部使用了线程池,能在一定成都上避免了大量线程的资源耗用问题,并通过SynchronizationContext解决了封送的问题,让我们的回调事件代码逻辑简单清晰,推荐大家使用.
朱燚的技术博客,转载请注明出处
http://yizhu2000.cnblogs.com
http://blog.csdn.net/yizhu2000