/* Copyright (c)2015,烟台大学计算机与控制工程学院 All rights reserved. 文件名称:项目1-1.cbp 作 者:孙钰坤 完成日期:2015年12月4日 版 本 号:v1.0 问题描述:实现二叉树的层次遍历算法,并对用”A(B(D,E(H(J,K(L,M(,N))))),C(F,G(,I)))”创建的二叉树进行测试。 输入描述:无 程序输出:测试数据 */
代码:
#ifndef BTREE_H_INCLUDED #define BTREE_H_INCLUDED #include <stdio.h> #include <malloc.h> #define MaxSize 100 typedef char ElemType; typedef struct node { ElemType data; //数据元素 struct node *lchild; //指向左孩子 struct node *rchild; //指向右孩子 } BTNode; void CreateBTNode(BTNode *&b,char *str); //由str串创建二叉链 BTNode *FindNode(BTNode *b,ElemType x); //返回data域为x的节点指针 BTNode *LchildNode(BTNode *p); //返回*p节点的左孩子节点指针 BTNode *RchildNode(BTNode *p); //返回*p节点的右孩子节点指针 int BTNodeDepth(BTNode *b); //求二叉树b的深度 void DispBTNode(BTNode *b); //以括号表示法输出二叉树 void DestroyBTNode(BTNode *&b); //销毁二叉树 #endif // BTREE_H_INCLUDED //二叉树基本运算函数 void CreateBTNode(BTNode *&b,char *str) //由str串创建二叉链 { BTNode *St[MaxSize],*p=NULL; int top=-1,k,j=0; char ch; b=NULL; //建立的二叉树初始时为空 ch=str[j]; while (ch!='\0') //str未扫描完时循环 { switch(ch) { case '(': top++; St[top]=p; k=1; break; //为左节点 case ')': top--; break; case ',': k=2; break; //为右节点 default: p=(BTNode *)malloc(sizeof(BTNode)); p->data=ch; p->lchild=p->rchild=NULL; if (b==NULL) //p指向二叉树的根节点 b=p; else //已建立二叉树根节点 { switch(k) { case 1: St[top]->lchild=p; break; case 2: St[top]->rchild=p; break; } } } j++; ch=str[j]; } } BTNode *FindNode(BTNode *b,ElemType x) //返回data域为x的节点指针 { BTNode *p; if (b==NULL) return NULL; else if (b->data==x) return b; else { p=FindNode(b->lchild,x); if (p!=NULL) return p; else return FindNode(b->rchild,x); } } BTNode *LchildNode(BTNode *p) //返回*p节点的左孩子节点指针 { return p->lchild; } BTNode *RchildNode(BTNode *p) //返回*p节点的右孩子节点指针 { return p->rchild; } int BTNodeDepth(BTNode *b) //求二叉树b的深度 { int lchilddep,rchilddep; if (b==NULL) return(0); //空树的高度为0 else { lchilddep=BTNodeDepth(b->lchild); //求左子树的高度为lchilddep rchilddep=BTNodeDepth(b->rchild); //求右子树的高度为rchilddep return (lchilddep>rchilddep)? (lchilddep+1):(rchilddep+1); } } void DispBTNode(BTNode *b) //以括号表示法输出二叉树 { if (b!=NULL) { printf("%c",b->data); if (b->lchild!=NULL || b->rchild!=NULL) { printf("("); DispBTNode(b->lchild); if (b->rchild!=NULL) printf(","); DispBTNode(b->rchild); printf(")"); } } } void DestroyBTNode(BTNode *&b) //销毁二叉树 { if (b!=NULL) { DestroyBTNode(b->lchild); DestroyBTNode(b->rchild); free(b); } } void LevelOrder(BTNode *b) { BTNode *p; BTNode *qu[MaxSize]; //定义环形队列,存放节点指针 int front,rear; //定义队头和队尾指针 front=rear=-1; //置队列为空队列 rear++; qu[rear]=b; //根节点指针进入队列 while (front!=rear) //队列不为空 { front=(front+1)%MaxSize; p=qu[front]; //队头出队列 printf("%c ",p->data); //访问节点 if (p->lchild!=NULL) //有左孩子时将其进队 { rear=(rear+1)%MaxSize; qu[rear]=p->lchild; } if (p->rchild!=NULL) //有右孩子时将其进队 { rear=(rear+1)%MaxSize; qu[rear]=p->rchild; } } } int main() { BTNode *b1,*b2; CreateBTNode(b1,"A(B(D,E(H(J,K(L,M(,N))))),C(F,G(,I)))"); printf("二叉树b1: "); DispBTNode(b1); printf("\n"); printf("层次遍历序列:\n"); LevelOrder(b1); printf("\n\n"); DestroyBTNode(b1); CreateBTNode(b2,"A(B(D,E(H(J,K(L,M(,N)))))"); printf("二叉树b2: "); DispBTNode(b2); printf("\n"); printf("层次遍历序列:\n"); LevelOrder(b2); DestroyBTNode(b2); return 0; }
运行结果:
知识点总结:二叉树算法库的应用