实习1:进程同步
实习要求
在Windows 2000 环境下,创建一个包含n 个线程的控制台进程。用这n 个线程来表示n
个读者或写者。每个线程按相应测试数据文件的要求,进行读写操作。请用信号量机制分别
实现读者优先和写者优先的读者-写者问题。
读者-写者问题的读写操作限制:
1)写-写互斥;
2)读-写互斥;
3)读-读允许;
读者优先的附加限制:如果一个读者申请进行读操作时已有另一读者正在进行读操作,
则该读者可直接开始读操作。
写者优先的附加限制:如果一个读者申请进行读操作时已有另一写者在等待访问共享资
源,则该读者必须等到没有写者处于等待状态后才能开始读操作。
运行结果显示要求:要求在每个线程创建、发出读写操作申请、开始读写操作和结束读
写操作时分别显示一行提示信息,以确信所有处理都遵守相应的读写操作限制。
测试数据文件格式
测试数据文件包括n 行测试数据,分别描述创建的n 个线程是读者还是写者,以及读写
操作的开始时间和持续时间。每行测试数据包括四个字段,各字段间用空格分隔。第一字段
为一个正整数,表示线程序号。第二字段表示相应线程角色,R 表示读者是,W 表示写者。
第三字段为一个正数,表示读写操作的开始时间。线程创建后,延时相应时间(单位为秒)
后发出对共享资源的读写申请。第四字段为一个正数,表示读写操作的持续时间。当线程读
写申请成功后,开始对共享资源的读写操作,该操作持续相应时间后结束,并释放共享资源。
下面是一个测试数据文件的例子:
1 R 3 5
2 W 4 5
3 R 5 2
4 R 6 5
5 W 5.1 3
与实验相关的API 介绍
在本实验中可能涉及的API 有:
线程控制:
CreateThread 完成线程创建,在调用进程的地址空间上创建一个线程,以执行指定的函
数;它的返回值为所创建线程的句柄。
HANDLE CreateThread(
LPSECURITY_ATTRIBUTES lpThreadAttributes, // SD
DWORD dwStackSize, // initial stack size
LPTHREAD_START_ROUTINE lpStartAddress, // thread
function
LPVOID lpParameter, // thread argument
DWORD dwCreationFlags, // creation option
LPDWORD lpThreadId // thread identifier
);
ExitThread 用于结束当前线程。
VOID ExitThread(
DWORD dwExitCode // exit code for this thread
);
Sleep 可在指定的时间内挂起当前线程。
VOID Sleep(
DWORD dwMilliseconds // sleep time
);
信号量控制:
CreateMutex 创建一个互斥对象,返回对象句柄;
HANDLE CreateMutex(
LPSECURITY_ATTRIBUTES lpMutexAttributes, // SD
BOOL bInitialOwner, // initial owner
LPCTSTR lpName // object name
);
OpenMutex 打开并返回一个已存在的互斥对象句柄,用于后续访问;
HANDLE OpenMutex(
DWORD dwDesiredAccess, // access
BOOL bInheritHandle, // inheritance option
LPCTSTR lpName // object name
);
ReleaseMutex 释放对互斥对象的占用,使之成为可用。
BOOL ReleaseMutex(
HANDLE hMutex // handle to mutex
);
WaitForSingleObject 可在指定的时间内等待指定对象为可用状态;
DWORD WaitForSingleObject(
HANDLE hHandle, // handle to object
DWORD dwMilliseconds // time-out interval
);
实验程序代码
#include <windows.h>
#include <ctype.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <malloc.h>
#define MAX_PERSON 100
#define READER 0
#define WRITER 1
#define END -1
#define R READER
#define W WRITER
typedef struct _Person
{
HANDLE m_hThread;
int m_nType;
int m_nStartTime;
int m_nWorkTime;
int m_nID;
}Person;
Person g_Persons[MAX_PERSON];
int g_NumPerson = 0;
long g_CurrentTime= 0;
int g_PersonLists[] = {
1, R, 5, 5,
2, W, 4, 5,
3, R, 2, 2,
4, R, 1, 5,
END,
};
int g_NumOfReading = 0;
HANDLE g_hReadMutex;
HANDLE g_hWriteMutex;
void CheckPersonList(int *pPersonList);
bool CreateReader(int StartTime,int WorkTime);
bool CreateWriter(int StartTime,int WorkTime);
DWORD WINAPI ReaderProc(LPVOID lpParam);
DWORD WINAPI WriterProc(LPVOID lpParam);
int main()
{
g_hReadMutex = CreateMutex(NULL,FALSE,NULL);
g_hWriteMutex = CreateMutex(NULL,FALSE,NULL);
g_CurrentTime = 0;
while(true)
{
CheckPersonList(g_PersonLists);
g_CurrentTime++;
Sleep(300);
printf("CurrentTime = %d/n",g_CurrentTime);
}
return 0;
}
void CheckPersonList(int *pPersonLists)
{
int i=0;
int *pList = pPersonLists;
bool Ret;
while(pList[0] != END)
{
if(pList[2] == g_CurrentTime)
{
switch(pList[1])
{
case R:
Ret = CreateReader(pList[2],pList[3]);
break;
case W:
Ret = CreateWriter(pList[2],pList[3]);
break;
}
if(!Ret)
printf("Create Person %d is wrong/n",pList[0]);
}
pList += 4; // move to next person list
}
}
DWORD WINAPI ReaderProc(LPVOID lpParam)
{
Person *pPerson = (Person*)lpParam;
printf("Reader %d is request the Shared Buffer.../n",pPerson->m_nID);
WaitForSingleObject(g_hReadMutex,INFINITE);
if(g_NumOfReading ==0)
{
WaitForSingleObject(g_hWriteMutex,INFINITE);
}
g_NumOfReading++;
ReleaseMutex(g_hReadMutex);
printf("Reader %d is request ok/n",pPerson->m_nID);
// modify the reader's real start time
pPerson->m_nStartTime = g_CurrentTime;
printf("Reader %d is Reading the Shared Buffer.../n",pPerson->m_nID);
while(g_CurrentTime <= pPerson->m_nStartTime + pPerson->m_nWorkTime)
{
// .. perform read operations
}
printf("Reader %d is Exit.../n",pPerson->m_nID);
WaitForSingleObject(g_hReadMutex,INFINITE);
g_NumOfReading--;
if(g_NumOfReading == 0)
ReleaseMutex(g_hWriteMutex);
ReleaseMutex(g_hReadMutex);
ExitThread(0);
return 0;
}
DWORD WINAPI WriterProc(LPVOID lpParam)
{
WaitForSingleObject(g_hWriteMutex,INFINITE);
Person *pPerson = (Person*)lpParam;
// modify the writer's real start time
pPerson->m_nStartTime = g_CurrentTime;
printf("Writer %d is Writting the Shared Buffer.../n",pPerson->m_nID);
while(g_CurrentTime <= pPerson->m_nStartTime + pPerson->m_nWorkTime)
{
// .. perform write operations
}
printf("Writer %d is Exit.../n",pPerson->m_nID);
ReleaseMutex(g_hWriteMutex);
ExitThread(0);
return 0;
}
bool CreateReader(int StartTime,int WorkTime)
{
DWORD dwThreadID;
if(g_NumPerson >= MAX_PERSON)
return false;
Person *pPerson = &g_Persons[g_NumPerson];
pPerson->m_nID = g_NumPerson;
pPerson->m_nStartTime = StartTime;
pPerson->m_nWorkTime = WorkTime;
pPerson->m_nType = READER;
g_NumPerson++;
// Create an New Thread
pPerson->m_hThread = CreateThread(NULL,0,ReaderProc,(LPVOID)pPerson,0,&dwThreadID);
if(pPerson->m_hThread == NULL)
return false;
return true;
}
bool CreateWriter(int StartTime,int WorkTime)
{
DWORD dwThreadID;
if(g_NumPerson >= MAX_PERSON)
return false;
Person *pPerson = &g_Persons[g_NumPerson];
pPerson->m_nID = g_NumPerson;
pPerson->m_nStartTime = StartTime;
pPerson->m_nWorkTime = WorkTime;
pPerson->m_nType = WRITER;
g_NumPerson++;
// Create an New Thread
pPerson->m_hThread = CreateThread(NULL,0,WriterProc,(LPVOID)pPerson,0,&dwThreadID);
if(pPerson->m_hThread == NULL)
return false;
return true;
}
关于同步互斥的API探讨
Windows API里面有两个方法可以实现同步互斥,一个是CreateMutex创建互斥信号,另外一个是CreateSemaphore创建一般信号量.上面的程序是实现一般的读者写者的同步互斥问题,按理来说使用Mutex是比较的选择,可是实际上面的程序运行的结果发现,当创建Mutex的线程结束后,其Mutex就自动释放(解开),即使这个时候没有使用ReleaseMutex函数.然后老师叫我使用CreateSemaphore来实现,测试发祥,使用Semaphore就没有这个问题.不知道这个问题是不是Windows系统故意这样设计的.
关于Windows实现的同步互斥的详细API介绍,请查看http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/using_synchronization.asp