题目大意:从n个数中选出m段不相交的子串,子串的长度均为k,问所有选出来的子串的所有数的和最大为多少。
DP题,DP还是太弱,开始时的dp方程居然写成了O(n^3)...
dp[i][j]: 以num[i]结尾的序列,分成j段的最大和
dp[i][j]=max(dp[k][j-1]+sum[i]-sum[i-m]) 这样的话,其实只要第一重循环是选的段数,第二重循环时数字个数
我又换了种思路
dp[i][j]: 前i个数,分成j段的最大和
dp[i][j]=max(dp[i-1][j],dp[i-m][j-1]+sum[i]-sum[i-m])
思路:二维嘛,所以写出来的dp方程肯定是要么从第一维变化转移过来的,要么从第二维的变化转移过来的
AC代码:
//#pragma comment(linker, "/STACK:102400000,102400000") #include <cstdio> #include <cstring> #include <algorithm> #include <string> #include <iostream> #include <iomanip> #include <cmath> #include <map> #include <set> #include <queue> using namespace std; #define ls(rt) rt*2 #define rs(rt) rt*2+1 #define ll long long #define ull unsigned long long #define rep(i,s,e) for(int i=s;i<e;i++) #define repe(i,s,e) for(int i=s;i<=e;i++) #define CL(a,b) memset(a,b,sizeof(a)) #define IN(s) freopen(s,"r",stdin) #define OUT(s) freopen(s,"w",stdout) const ll ll_INF = ((ull)(-1))>>1; const double EPS = 1e-8; const double pi = acos(-1); const int INF = 100000000; const int MAXN = 5000+100; ll num[MAXN],dp[MAXN][MAXN],pp[MAXN]; int n,m,k; ll solve() { CL(dp,0); for(int i=m;i<=n;i++) for(int j=1;j<=k;j++) dp[i][j]=max(dp[i-m][j-1]+pp[i]-pp[i-m],dp[i-1][j]); return dp[n][k]; } int main() { //IN("C.txt"); while(~scanf("%d%d%d",&n,&m,&k)) { pp[0]=0; for(int i=1;i<=n;i++) { scanf("%I64d",&num[i]); pp[i]=pp[i-1]+num[i]; } printf("%I64d\n",solve()); } return 0; }
#include<iostream> #include<cstdio> #include<cstring> #include<string> #include<algorithm> #include<map> #include<queue> #include<stack> #include<set> #include<cmath> #include<vector> #define inf 0x3f3f3f3f #define Inf 0x3FFFFFFFFFFFFFFFLL #define eps 1e-8 #define pi acos(-1.0) using namespace std; typedef long long ll; const int maxn = 5000 + 5; int a[maxn]; ll sum[maxn],dp[maxn][maxn],maxv[maxn]; int main() { // freopen("in.txt","r",stdin); // freopen("out.txt","w",stdout); int n,m,k; scanf("%d%d%d",&n,&m,&k); for(int i = 1;i <= n;++i) scanf("%d",&a[i]); sum[0] = 0; for(int i = 1;i <= n;++i) sum[i] = sum[i-1] + a[i]; memset(dp,0xff,sizeof(dp)); memset(maxv,0,sizeof(maxv)); dp[0][0] = 0; for(int j = 1;j <= k;++j) { for(int i = 1;i <= n;++i) { if(i - m >= 0) { dp[i][j] = max(dp[i][j],maxv[i-m] + sum[i] - sum[i-m]); } } for(int i = 1;i <= n;++i) maxv[i] = max(maxv[i-1],dp[i][j]); } ll ans = 0; for(int i = 1;i <= n;++i) if(dp[i][k] != -1) ans = max(ans,dp[i][k]); printf("%I64d\n",ans); return 0; }