https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&category=589&problem=4407&mosmsg=Submission+received+with+ID+1528513
Factors
The fundamental theorem of arithmetic states that every integer greater than 1 can be uniquely represented as a product of one or more primes. While unique, several arrangements of the prime factors
may be possible. For example:
10 = 2 * 5 20 = 2 * 2 * 5
= 5 * 2 = 2 * 5 * 2
= 5 * 2 * 2
Let f (k) be the number of di erent arrangements of the prime factors of k. So f (10) = 2 and
f (20) = 3.
Given a positive number n, there always exists at least one number k such that f (k) = n. We want
to know the smallest such k.
Input
The input consists of at most 1000 test cases, each on a separate line. Each test case is a positive
integer n < 2
63
.
Output
For each test case, display its number n and the smallest number k > 1 such that f (k) = n. The
numbers in the input are chosen such that k < 2
63
.
Sample Input
1
2
3
105
Sample Output
1 2
2 6
3 12
105 720
其实没judge 因为uvalive的评测有问题 我自己测的数据反正跟之前AC的结果一样。。。。
但是我二逼的是----因为不能judge,我就拿别的AC代码对拍作为judge, 不合法的情况输出应该是设定的INF,然后我设定的最大值跟AC代码设定的INF不一样,我以为自己错了,就debug了好几天,今天发现,卧槽,,,,其实我的可能一直都是对的啊,,,当然以后uvalive好了再说
思路就是反素数了,具体看教程http://blog.csdn.net/u011026968/article/details/38784687
然后写的话,就很容易了,就是跟http://blog.csdn.net/u011026968/article/details/38787473 很想,基本直接copy
我的代码:
#include <cstdio> #include <cstring> #include <algorithm> #include <string> #include <iostream> #include <iomanip> #include <cmath> #include <map> #include <set> #include <queue> using namespace std; #define ls(rt) rt*2 #define rs(rt) rt*2+1 #define ll long long #define ull unsigned long long #define rep(i,s,e) for(int i=s;i<e;i++) #define repe(i,s,e) for(int i=s;i<=e;i++) #define CL(a,b) memset(a,b,sizeof(a)) #define IN(s) freopen(s,"r",stdin) #define OUT(s) freopen(s,"w",stdout) const ll ll_INF = ((ull)(-1))>>1; const double EPS = 1e-8; const int INF = 100000000; const int maxc=100; //const int MOD = 1e9+7; ll C[maxc][maxc]; void calC(){ // C(n,k),n个数里选k个 int i,j; for(int i=0;i<maxc;i++) C[i][i]=C[i][0]=1LL; for(int i=2;i<maxc;i++) for(j=1;j<i;j++) C[i][j]=(C[i-1][j]+C[i-1][j-1]);//%MOD; } const int SIZE = 21; int p[SIZE] = {2,3,5,7,11, 13,17,19,23,29, 31,37,41,43,47, 53,59,61,67,71,73};//7;53;59;61;67;71;73 ll ans,n; void dfs(ll tmp, int dep, int num, ll ret,int cc) { /////////////////////// //printf("tmp=%lld dep=%d num=%d ret=%lld cc=%d\n",tmp,dep,num,ret,cc); //////////////////////// if(ret == n) ans=min(ans,tmp); if(ret>=n || dep>SIZE-1 )return; ll tt=1; for(int i=1;i<num;i++) { tt*=p[dep]; ///////////////// //printf("n=%lld le=%lld %lld ri=%lld %lld\n",n,n/ret,C[cc+i][i],ans/tt , tmp); ///////////////////// //if(n/ret > C[cc+i][i] || ans/tt < tmp)break;// if(ans/tt < tmp)break; //if(cc+i>64)break; dfs(tmp*tt,dep+1,i+1,ret*C[cc+i][i],cc+i); } } int main() { //IN("uva6396.txt"); calC(); while(~scanf("%lld",&n)) { ans=ll_INF; if(n == 1)ans=2; else dfs(1, 0, 65, 1, 0); printf("%lld %lld\n",n,ans); } return 0; }
#include<iostream> #include<cstdio> #include<cstring> #include<cmath> #define FOR(i, x, y) for(int i = x; i <= y; i++) #define oo 0x3f3f3f3f using namespace std; typedef long long ll; ll N; ll C[65][65]; int P[20]; bool isPrime(int n) { FOR(i, 2, sqrt(n)) if(n % i == 0) return 0; return 1; } void init() { FOR(i, 0, 64) { C[i][0] = 1; FOR(j, 1, i) C[i][j] = C[i-1][j] + C[i-1][j-1]; } FOR(i, 2, 64) if(isPrime(i)) P[++P[0]] = i; } ll ans; int a[65]; int sum[65]; void dfs(int dep, ll s) { if(s == 1) { double temp = 0; FOR(i, 1, dep - 1) temp += a[i] * log(P[i]); ll t = 1; if(temp < 63 * log(2)) { FOR(i, 1, dep - 1) FOR(j, 1, a[i]) t *= P[i]; ans = min(ans, t); } } if(s <= 1) return; FOR(i, 1, a[dep - 1]) { a[dep] = i; sum[dep] = sum[dep-1] + i; if(sum[dep] > 64) break; if(C[sum[dep]][i] && s % C[sum[dep]][i] == 0) dfs(dep + 1, s / C[sum[dep]][i]); } } ll solve() { ans = 9223372036854775807L; a[0] = 64; dfs(1, N); if(N == 1) ans = 2; return ans; } int main() { init(); while(scanf("%lld", &N) != EOF) { printf("%lld %lld\n", N, solve()); } return 0; }
#include <iostream> #include <cstdio> #include <algorithm> #include <cstring> #include <cstdlib> #include <utility> #include <map> using namespace std; #define IN(s) freopen(s,"r",stdin) #define maxn 1009 int p[]={1,2,3,5,7,11,13,17,19,23,29,31,37,41,43,47}; typedef unsigned long long ull; ull mod = 1000000007; const ull INFULL=(ull)(-1LL); map<ull,ull> ans; ull n[maxn]; bool safemul(ull &c,int x) { if((c*x)%mod!=((c%mod)*x)%mod) return false; c*=x; return true; } ull qpow(ull a,ull n,ull mod) { ull b=1; a%=mod; while(n) { if(n&1) b*=a,b%=mod; a*=a,a%=mod; n>>=1; } return b; } void dfs(int t,int s,int sum,ull a,ull b,ull c) { ull tmp = b*qpow(a,mod-2,mod)%mod; if(ans.find(tmp)!=ans.end()){ ull &x = ans[tmp]; if(x>c) x=c; } if(t>15) return; int i; for(i=1;i<=s;i++){ b*=i+sum,b%=mod; a*=i,a%=mod; if(!safemul(c,p[t])) return; dfs(t+1,i,sum+i,a,b,c); } } int main() { //freopen("D.in","r",stdin); //freopen("D.out","w",stdout); //IN("uva6396.txt"); int p=0; while(cin>>n[++p]){ ans[n[p]%mod]=INFULL; } p--; dfs(1,64,0,1,1,1); int i; for(i=1;i<=p;i++){ if(n[i]==1){ cout<<"1 2"<<endl; continue; } cout<<n[i]<<" "<<ans[n[i]%mod]<<endl; } return 0; }