最大流问题,地址:http://acm.pku.edu.cn/JudgeOnline/problem?id=1274
/**/
/*距离标号的最大流*/
#include < stdio.h >
const int LEN = 500 ;
const int MAX = 0x7fffffff ;
struct
{
int c;
int f;
} map[LEN][LEN]; /**/ /*邻接矩阵*/
struct
{
int node;
} nearl[LEN][LEN]; /**/ /*邻接链表,第一个表示最后一个位置*/
void initm ( int n )
{
for ( int i=0; i<n; i++ )
{
nearl[i][0].node = 0;
for ( int j=0; j<n; j++ )
{
map[i][j].c = map[i][j].f = 0;
}
}
}
int dis[LEN]; // 标号的数组
void initd ( int n )
{
for ( int i=0; i<n; i++ )
{
dis[i] = -1;
}
}
int que[LEN];
int head, tail;
void initq ()
{
head = 0;
tail = -1;
}
void inq ( int in )
{
que[++tail] = in;
}
void outq ( int * out )
{
*out = que[head++];
}
int testempty ()
{
return head > tail ? 1 : 0;
}
int mark ( int s, int t, int n ) /**/ /*进行距离标号*/
{
int out;
int in;
initd ( n );
initq ();
inq ( s );
dis[s] = 0;
while ( ! testempty () )
{
outq ( &out );
if ( out == t )
{
return 1;
}
for ( int p=1; p<=nearl[out][0].node; p++ )
{
in = nearl[out][p].node;
if ( map[out][in].c > map[out][in].f || map[in][out].f > 0 )
{
if ( dis[in] == -1 )
{
dis[in] = dis[out] + 1;
inq ( in );
}
}
}
}
return 0;
}
typedef struct
{
int now;
int from;
int weight;
} type;
type stack[LEN]; // 用于记录路径的堆栈
int top;
void inits ()
{
top = -1;
}
void push ( type * in )
{
top ++;
stack[top].now = in->now;
stack[top].from = in->from;
stack[top].weight = in->weight;
}
void pop ()
{
top --;
}
int gettop ()
{
return stack[top].now;
}
int minest ( int a, int b )
{
return a < b ? a : b;
}
int ad ()
{
int now, from;
int min = MAX;
int i;
for ( i=1; i<=top; i++ )
{
now = stack[i].now;
from = stack[i].from;
if ( stack[i].weight > 0 )
{
min = minest ( min, map[from][now].c-map[from][now].f );
}
else
{
min = minest ( min, map[now][from].f );
}
}
for ( i=1; i<=top; i++ )
{
now = stack[i].now;
from = stack[i].from;
if ( stack[i].weight > 0 )
{
map[from][now].f += min;
}
else
{
map[now][from].f -= min;
}
}
return min;
}
int maxflow ( int s, int t, int n )
{
int p;
int i;
int flow = 0;
type in;
while ( mark ( s, t, n ) )
{
inits ();
in.now = s;
in.from = -1;
in.weight = 1;
push ( &in );
while ( ( p = gettop () ) != t )
{
for ( i=1; i<=nearl[p][0].node; i++ )
{
int v = nearl[p][i].node;
if ( map[p][v].c > map[p][v].f )
{
if ( dis[p] == dis[v] - 1 )
{
in.now = v;
in.from = p;
in.weight = 1;
push ( &in );
break;
}
}
if ( map[v][p].f > 0 )
{
if ( dis[p] == dis[v] - 1 )
{
in.now = v;
in.from = p;
in.weight = -1;
push ( &in );
break;
}
}
}
if ( i > nearl[p][0].node )
{
dis[p] = n;
pop ();
}
}
flow += ad ();
}
return flow;
}
void adde ( int a, int b, int c ) // 增加一条边
{
if ( ! map[a][b].c && ! map[b][a].c )
{
int p = nearl[a][0].node;
nearl[a][++p].node = b;
nearl[a][0].node ++;
p = nearl[b][0].node;
nearl[b][++p].node = a;
nearl[b][0].node ++;
}
map[a][b].c += c;
}
int main ()
{
int n, m;
int si;
int b;
int i, j;
while ( scanf ( "%d%d", &n, &m ) != EOF )
{
initm ( n + m + 2 );
for ( i=1; i<=m; i++ )
{
adde ( n+i, n+m+1, 1 );
}
for ( i=1; i<=n; i++ )
{
scanf ( "%d", &si );
adde ( 0, i, 1 );
for ( j=0; j<si; j++ )
{
scanf ( "%d", &b );
adde ( i, n+b, 1 );
}
}
printf ( "%d\n", maxflow ( 0, n+m+1, n+m+2 ) );
}
return 0;
}
#include < stdio.h >
const int LEN = 500 ;
const int MAX = 0x7fffffff ;
struct
{
int c;
int f;
} map[LEN][LEN]; /**/ /*邻接矩阵*/
struct
{
int node;
} nearl[LEN][LEN]; /**/ /*邻接链表,第一个表示最后一个位置*/
void initm ( int n )
{
for ( int i=0; i<n; i++ )
{
nearl[i][0].node = 0;
for ( int j=0; j<n; j++ )
{
map[i][j].c = map[i][j].f = 0;
}
}
}
int dis[LEN]; // 标号的数组
void initd ( int n )
{
for ( int i=0; i<n; i++ )
{
dis[i] = -1;
}
}
int que[LEN];
int head, tail;
void initq ()
{
head = 0;
tail = -1;
}
void inq ( int in )
{
que[++tail] = in;
}
void outq ( int * out )
{
*out = que[head++];
}
int testempty ()
{
return head > tail ? 1 : 0;
}
int mark ( int s, int t, int n ) /**/ /*进行距离标号*/
{
int out;
int in;
initd ( n );
initq ();
inq ( s );
dis[s] = 0;
while ( ! testempty () )
{
outq ( &out );
if ( out == t )
{
return 1;
}
for ( int p=1; p<=nearl[out][0].node; p++ )
{
in = nearl[out][p].node;
if ( map[out][in].c > map[out][in].f || map[in][out].f > 0 )
{
if ( dis[in] == -1 )
{
dis[in] = dis[out] + 1;
inq ( in );
}
}
}
}
return 0;
}
typedef struct
{
int now;
int from;
int weight;
} type;
type stack[LEN]; // 用于记录路径的堆栈
int top;
void inits ()
{
top = -1;
}
void push ( type * in )
{
top ++;
stack[top].now = in->now;
stack[top].from = in->from;
stack[top].weight = in->weight;
}
void pop ()
{
top --;
}
int gettop ()
{
return stack[top].now;
}
int minest ( int a, int b )
{
return a < b ? a : b;
}
int ad ()
{
int now, from;
int min = MAX;
int i;
for ( i=1; i<=top; i++ )
{
now = stack[i].now;
from = stack[i].from;
if ( stack[i].weight > 0 )
{
min = minest ( min, map[from][now].c-map[from][now].f );
}
else
{
min = minest ( min, map[now][from].f );
}
}
for ( i=1; i<=top; i++ )
{
now = stack[i].now;
from = stack[i].from;
if ( stack[i].weight > 0 )
{
map[from][now].f += min;
}
else
{
map[now][from].f -= min;
}
}
return min;
}
int maxflow ( int s, int t, int n )
{
int p;
int i;
int flow = 0;
type in;
while ( mark ( s, t, n ) )
{
inits ();
in.now = s;
in.from = -1;
in.weight = 1;
push ( &in );
while ( ( p = gettop () ) != t )
{
for ( i=1; i<=nearl[p][0].node; i++ )
{
int v = nearl[p][i].node;
if ( map[p][v].c > map[p][v].f )
{
if ( dis[p] == dis[v] - 1 )
{
in.now = v;
in.from = p;
in.weight = 1;
push ( &in );
break;
}
}
if ( map[v][p].f > 0 )
{
if ( dis[p] == dis[v] - 1 )
{
in.now = v;
in.from = p;
in.weight = -1;
push ( &in );
break;
}
}
}
if ( i > nearl[p][0].node )
{
dis[p] = n;
pop ();
}
}
flow += ad ();
}
return flow;
}
void adde ( int a, int b, int c ) // 增加一条边
{
if ( ! map[a][b].c && ! map[b][a].c )
{
int p = nearl[a][0].node;
nearl[a][++p].node = b;
nearl[a][0].node ++;
p = nearl[b][0].node;
nearl[b][++p].node = a;
nearl[b][0].node ++;
}
map[a][b].c += c;
}
int main ()
{
int n, m;
int si;
int b;
int i, j;
while ( scanf ( "%d%d", &n, &m ) != EOF )
{
initm ( n + m + 2 );
for ( i=1; i<=m; i++ )
{
adde ( n+i, n+m+1, 1 );
}
for ( i=1; i<=n; i++ )
{
scanf ( "%d", &si );
adde ( 0, i, 1 );
for ( j=0; j<si; j++ )
{
scanf ( "%d", &b );
adde ( i, n+b, 1 );
}
}
printf ( "%d\n", maxflow ( 0, n+m+1, n+m+2 ) );
}
return 0;
}