机器学习各类工具weka、scikit-learn等各项指标的对比

以下表格摘自:http://www.shogun-toolbox.org/

另推荐机器学习软件汇总网站 http://mloss.org/software/


feature shogun weka kernlab dlib nieme orange java-ml pyML mlpy pybrain torch3 scikit-learn
General Features Graphical User Interface
  One Class Classification
  Classification
  Multiclass classification
  Regression
  Structured Output Learning
  Pre-Processing
  Built-in Model Selection Strategies
  Visualization
  Test Framework
  Large Scale Learning
  Semi-supervised Learning
  Multitask Learning
  Domain Adaptation
  Serialization
  Parallelized Code
  Performance Measures (auROC etc)
  Image Processing
Supported Operating Systems Linux
  Windows
  Mac OSX
  Other Unix
Language Bindings Python
  R
  Matlab
  Octave
  C/C++
  Command Line
  Java
  C#
  Lua
  Ruby
SVM Solvers SVMLight
  LibSVM
  SVM Ocas
  LibLinear
  BMRM
  LaRank
  SVMPegasos
  SVM SGD
  other
Regression Kernel Ridge Regression
  Support Vector Regression
  Gaussian Processes
  Relevance Vector Machine
Multiple Kernel Learning MKL
  q-norm MKL
Classifiers Naive Bayes
  Bayesian Networks
  Multi Layer Perceptron
  RBF Networks
  Logistic Regression
  LASSO
  Decision Trees
  k-NN
Linear Classifiers Linear Programming Machine
  LDA
Distributions Markov Chains
  Hidden Markov Models
Kernels Linear
  Gaussian
  Polynomial
  String Kernels
  Sigmoid Kernel
  Kernel Normalizer
Feature Selection Forward
  Wrapper methods
  Recursive Feature Selection
Missing Features Mean value imputation
  EM-based/model based imputation
Clustering Hierarchical Clustering
  k-means
Optimization BFGS
  conjugate gradient
  gradient descent
  bindings to CPLEX
  bindings to Mosek
  bindings to other solver
Supported File Formats Binary
  Arff
  HDF5
  CSV
  libSVM/ SVMLight format
  Excel
Supported Data Types Sparse Data Representation
  Dense Matrices
  Strings
  Support for native (e.g. C) types (char, signed and unsigned int8, int16, int32, int64, float, double, long double)


你可能感兴趣的:(vector,image,工具,float,output,Types)