剖析C++标准库智能指针(std::auto_ptr)

剖析C++标准库智能指针(std::auto_ptr)

1.Do you Smart Pointer?

      Smart Pointer,中文名:智能指针, 舶来品?
      不可否认,资源泄露(resource leak)曾经是C++程序的一大噩梦.垃圾回收
      机制(Garbage Collection)一时颇受注目.然而垃圾自动回收机制并不能
      满足内存管理的即时性和可视性,往往使高傲的程序设计者感到不自在.
      况且,C++实现没有引入这种机制.在探索中,C++程序员创造了锋利的
      "Smart Pointer".一定程度上,解决了资源泄露问题.

      也许,经常的,你会写这样的代码:
      //x拟为class:

//   class x{
      
//             public:        
      
//                    int m_Idata;
      
//             public:
      
//                    x(int m_PARAMin):m_Idata(m_PARAMin){}
      
//                    void print(){ cout<<m_Idata<<endl; }
      
//             .....
      
//             }
      
//
       void  fook() ... {
      x
* m_PTRx = new A(m_PARAMin);
      m_PTRx
->DoSomething();     //#2
      delete m_PTRx;
      }


            是的,这里可能没什么问题.可在复杂、N行、m_PTRclassobj所指对象生命周
      期要求较长的情况下,你能保证你不会忘记delete m_PTRclassobj吗?生活中,
      我们往往不应该有太多的口头保证,我们需要做些真正有用的东西.还有一个
      更敏感的问题:异常.假如在#2方法执行期异常发生,函数执行终止,那么new
      出的对象就会泄露.于是,你可能会说:那么就捕获异常来保证安全性好了.
      你写这样的程式:

     void  fook() ... {
      A
* m_PTRx = new x(m_PARAMin);
      
try...{
          m_PTRx
->DoSomething();
      }

      
catch(..)...{
          delete m_PTRx;
          
throw;
      }

      delete m_PTRx;
      }

      哦!天哪!想象一下,你的系统,是否会象专为捕获异常而设计的.

      一天,有人给你建议:"用Smart Pointer,那很安全.".你可以这样重写你的程序:
   

       void  fook() ... {
      auto_ptr
<x> m_SMPTRx(new x(m_PARAMin));
      m_SMPTRx
->DoSomething();
      }

 

      OK!你不太相信.不用delete吗?
      是的.不用整天提心吊胆的问自己:"我全部delete了吗?",而且比你的delete
      策略更安全.

      然后,还有人告诉你,可以这样用呢:

 

 ok1.
      auto_ptr
< x >  m_SMPTR1( new  x(m_PARAMin)); 
      auto_ptr
< x >  m_SMPTR2(m_SMPTR1);   // #2
      May be you can code # 2  like  this  :
          auto_ptr
< x >  m_SMPTR2;
          m_SMPTR2 
=  m_SMPTR1;      
      ok2.
      auto_ptr
< int >  m_SMPTR1( new   int ( 32 ));
      
      ok3.
      auto_ptr
< int >  m_SMPTR1;
      m_SMPTR1 
=  auto_ptr < int > ( new   int ( 100 ));
      也可以:
      auto_ptr
< int >  m_SMPTR1(auto_ptr < int > ( new   int ( 100 )));
      
      ok4.
      auto_ptr
< x >  m_SMPTR1( new  x(m_PARAMin));
      m_SMPTR1.reset(
new  x(m_PARAMin1));
      
      ok5.
      auto_ptr
< x >  m_SMPTR1( new  x(m_PARAMin));
      auto_ptr
< x >  m_SMPTR2(m_SMPTR.release());
      cout
<< ( * m_SMPTR2).m_Idata << endl;  
      
      ok6.
      auto_ptr
< int >  fook() ... {
      
return auto<int>(new int(100));
      }

 


           ok7.............and so on
     
      但不可这样用:
      
      

no1.   
      
char *  chrarray  =   new   char [ 100 ];
      strcpy(chrarray,
" I am programming. " );
      auto_ptr
< char *>  m_SMPTRchrptr(chrarray);
      
// auto_ptr并不可帮你管理数组资源     
       
      no2.
      vector
< auto_ptr < x >>  m_VECsmptr;
      m_VECsmptr.push_back(auto_ptr
< int > ( new   int ( 100 )));
      
// auto_ptr并不适合STL内容.
       
      no3.
      
const  auto_ptr < x >  m_SMPTR1( new  x( 100 ));
      auto_ptr
< x >  m_SMPTR( new  x( 200 ));
      
      no4.
      x m_OBJx(
300 );
      auto_ptr
< x >  m_SMPTR( & m_OBJx);
      
      no5
      x
*  m_PTR  =   new  x( 100 );
      auto_ptr
< x >  m_SMPTR  =  m_pTR;
      


      no6..........and so on

      预先提及所有权的问题,以便下面带着疑问剖析代码?

 

      power1.
      auto_ptr
< x >  m_SMPTR1( new  x( 100 ));
      auto_ptr
< x >  m_SMPTR2  =  m_SMPTR1;
      m_SMPTR2
-> print();
      
// 输出:100.
      m_SMPTR1 -> print();
      
// !! 非法的.

      power2.
      auto_ptr
< x >  m_SMPTR( new  x( 100 ));
      
      auto_ptr
< x >  returnfun(auto_ptr < x >  m_SMPTRin) ... {
      
return m_SMPTRin;
      }

      
      auto_ptr
< x >   =  returnfun(m_SMPTR);   // #5

 

      //在上面的#5中,我要告诉你对象所有权转移了两次.
      //什么叫对象所有权呢?
  
    2. std::auto_ptr的设计原理
      
      上面的一片正确用法,它们在干些什么?
            一片非法,它们犯了什么罪?
            一片什么所有权转移,它的内部机智是什么?
      哦!一头雾水?下面我们就来剖析其实现机制.
      基础知识:
              a.智能指针的关键技术:在于构造栈上对象的生命期控制
                堆上构造的对象的生命期.因为在智能指针的内部,存储
                着堆对象的指针,而且在构析函数中调用delete行为.
                大致机构如下:
                x* m_PTRx = new x(100);//#1
                template<typename T>
                auto_ptr{
                private:
                T* m_PTR;//维护指向堆对象的指针,在auto_ptr定位后    
                ....     //它应该指向#1构造的对象,即拥有所有权.
                ~auto(){ delete m_PTR; }
                ....
                }
             b.所有权转移之说
               上面曾有一非法的程式片段如下:
               auto_ptr<x> m_SMPTR1(new x(100));
               auto_ptr<x> m_SMPTR2 = m_SMPTR1;
               m_SMPTR2->print();
               //输出:100.
               m_SMPTR1->print();
               //!! 非法的.
               按常理来说,m_SMPTR->print();怎么是非法的呢?
               那是因为本来,m_SMPTR1维护指向new x(100)的指针,
               可是m_SMPTR2 = m_SMPTR1;auto_ptr内部机制使得m_SMPTR1将对象的地址
               传给m_SMPTR2,而将自己的对象指针置为0.
               那么自然m_SMPTR->print();失败.
               这里程序设计者要负明显的职责的.
               那么auto_ptr为什么采取这样的策略:保证所有权的单一性.
                                               亦保证了系统安全性.
               如果多个有全权的auto_ptr维护一个对象,那么在你消除一个
               auto_ptr时,将导致多个auto_ptr的潜在危险.
     
       下面我们以SGI-STL的auto_ptr设计为样本(去掉了无关分析的宏),来剖析其原理.

 

# 1   template  < class  _Tp >   class  auto_ptr  ... {
       #
2  private:
       #
3  _Tp* _M_ptr;  //定义将维护堆对象的指针

       #
4  public:
       #
5  typedef _Tp element_type;  //相关类型定义
       #6  explicit auto_ptr(_Tp* __p = 0) __STL_NOTHROW : _M_ptr(__p) ...{}
       #
7  auto_ptr(auto_ptr& __a) __STL_NOTHROW : _M_ptr(__a.release()) ...{}
       #
8  template <class _Tp1> auto_ptr(auto_ptr<_Tp1>& __a) __STL_NOTHROW
                                                 : _M_ptr(__a.release()) 
...{}
           
//#6、#7、#8是auto_ptr构造函数的三个版本.
           
//#6注释:传入对象的指针,构造auto_ptr.explicit关键字:禁止隐式转换.
           
//        这就是ok2正确,而no5(隐式转换)错误的原因.
           
//#7注释:拷贝构造函数.
           
//        传入auto_ptr实例,构造auto_ptr. ok1、ok3使用了这个构造式.
           
//        它是一个很关键的构造函数,在具体情况下,我们再分析
           
//#8注释:auto_ptr的模板成员,可在继承对象重载的基础上,实现特殊功能.
           
//   
           
//   举例:
           
//   class A{ public: 
           
//          virtual void fook(){cout<<"I am programming"<<endl;
           
//          /*..........*/                                   }; 
           
//   class B : public A {
           
//          virtual void fook(){ cout<<"I am working"<<endl;
           
//         /*...........*/                                  };  
           
//   auto_ptr<A> m_SMPTRa(new A(33));//实质:
           
//   auto_ptr<B> m_SMPTRb(m_SMPTRa); //基类的指针可以赋给派生类的指针          
           
//              
           
//   auto_ptr<B> m_SMPTRb(new B(44));//实质:
           
//   auto_ptr<A> m_SMPTRa(m_SMPTRb); //派生类的指针不可赋给基类的指针
           
//       
           
//   auto_ptr<A> m_SMPTRa(new B(33));  // ok!  
           
//   m_SMPTRa->fook()将调用派生类B的fook()
           
//   m_SMPTRa->A::fook()将调用基类A的fook()
           
//    
           
//   auto_ptr<B> m_SMPTRb(new A(33));  // wrong!
           
//   
           
//   
       #9  auto_ptr& operator=(auto_ptr& __a) __STL_NOTHROW ...{
       #
10 if (&__a != this...{ delete _M_ptr;  _M_ptr = __a.release(); }
       #
11 return *this;
       #
12 }

         
       #
13 template <class _Tp1>
       #
14 auto_ptr& operator=(auto_ptr<_Tp1>& __a) __STL_NOTHROW ...{
       #
15 if (__a.get() != this->get()) ...{ delete _M_ptr; _M_ptr = __a.release(); }
       #
16 return *this;
       #
16 }
  
          
//
          
// #9~~#16 两个版本的指派函数.
          
//         delete _M_ptr; 在指派前,销毁原维护的对象.
          
//         _a.release() ; release操作,详细代码参见#20~~#23.
          
//                        用于*this获得被指派对象,
          
//                        且将原维护auto_ptr置空.
          
//     no3使用了第一种指派.
          
//     而权限转移正是_a.release()的结果.
          
       #
17 ~auto_ptr() __STL_NOTHROW ...{ delete _M_ptr; }
          
//构析函数.消除对象.注意这里对对象的要求!
          
       #
17 _Tp& operator*() const __STL_NOTHROW ...{  return *_M_ptr; }
       #
18 _Tp* operator->() const __STL_NOTHROW ...return _M_ptr;  }
       #
19 _Tp* get() const __STL_NOTHROW ...return _M_ptr; }
         
//
         
//  操作符重载.
         
// #17注释:提领操作(dereference),获得对象. 见ok5用法.
         
// #18注释:成员运算符重载,返回对象指针.
         
// #19注释:普通成员函数.作用同于重载->运算符
         
//
       #20 _Tp* release() __STL_NOTHROW ...{
       #
21 _Tp* __tmp = _M_ptr;
       #
22 _M_ptr = 0;
       #
23 return __tmp;                }

         
//上面已经详解      
 
       #
24 void reset(_Tp* __p = 0) __STL_NOTHROW ...{
       #
25 delete _M_ptr;
       #
26 _M_ptr = __p;                          }

         
//
         
//传入对象指针,改变auto_ptr维护的对象
         
//       且迫使auto_ptr消除原来维护的对象
         
//       见ok3用法.

         
// According to the C++ standard, these conversions are required.  Most
         
// present-day compilers, however, do not enforce that requirement---and, 
         
// in fact, most present-day compilers do not support the language 
         
// features that these conversions rely on.
         


                //下面这片段用于类型转化,目前没有任何编译器支持
         //具体技术细节不诉.         

 

         

#ifdef __SGI_STL_USE_AUTO_PTR_CONVERSIONS

      #
27   private :
      #
28  template < class  _Tp1 >  
      #
29   struct  auto_ptr_ref  ... { _Tp1* _M_ptr; auto_ptr_ref(_Tp1* __p) : _M_ptr(__p) ...{}
                             }
;

      #
30   public :
      #
31  auto_ptr(auto_ptr_ref < _Tp >  __ref) __STL_NOTHROW
                               : _M_ptr(__ref._M_ptr) 
... {}
      #
32  template  < class  _Tp1 >  
      #
33   operator  auto_ptr_ref < _Tp1 > () __STL_NOTHROW 
      #
34   ... return auto_ptr_ref<_Tp>(this->release()); }
      #
35  template  < class  _Tp1 >   operator  auto_ptr < _Tp1 > () __STL_NOTHROW
      #
36   ... return auto_ptr<_Tp1>(this->release()); }
      #
37   #endif  /* __SGI_STL_USE_AUTO_PTR_CONVERSIONS */
      #
38  };

      
      OK!就是这样了.
      正如上面原理介绍处叙说,
      你需要正视两大特性:
      1.构造栈对象的生命期控制堆上构造的对象的生命期
      2.通过release来保证auto_ptr对对象的独权.
     
     在我们对源码分析的基础上,重点看看:
     no系列错误在何处?
     no1.
         我们看到构析函数template<class _Tp>
                         ~auto_ptr() _STL_NOTHROW
                        { delete _M_ptr; }
         所以它不能维护数组,
         维护数组需要操作:delete[] _M_ptr;
     no2.
        先提部分vector和auto_ptr代码:
        a.提auto_ptr代码
          
        

auto_ptr(auto_ptr &  __a) __STL_NOTHROW : _M_ptr(__a.release())  ... {}

        
        b.提vector代码
         


          Part1:
          
void  push_back( const  _Tp &  __x)  ... {
          
if (_M_finish != _M_end_of_storage) ...{
          construct(_M_finish, __x);
          
++_M_finish;
          }

          
else
         _M_insert_aux(end(), __x);
          }

        
         Part2:
         template 
< class  _T1,  class  _T2 >
         inline 
void  construct(_T1 *  __p,

         
// ++++++++++++++++++++++++++++++++ 
         
//          const _T2& __value) { +
         
// ++++++++++++++++++++++++++++++++
         
//   new (__p) _T1(__value);      +
         
// ++++++++++++++++++++++++++++++++

         }
         
         Part3.
         template 
< class  _Tp,  class  _Alloc >
         
void  
         vector
< _Tp, _Alloc > ::_M_insert_aux
         (iterator __position,

          
// ++++++++++++++++++++++++++++++++ 
          
//         const _Tp& __x)       ++
          
// ++++++++++++++++++++++++++++++++   
 
         
... {
         
if (_M_finish != _M_end_of_storage) ...{
         construct(_M_finish, 
*(_M_finish - 1));
         
++_M_finish;

         
//++++++++++++++++++++++++++++++++
         
//     _Tp __x_copy = __x;       +
         
//++++++++++++++++++++++++++++++++

         copy_backward(__position, _M_finish 
- 2, _M_finish - 1);
         
*__position = __x_copy;
         }

         
else ...{
         
const size_type __old_size = size();
         
const size_type __len = __old_size != 0 ? 2 * __old_size : 1;
         iterator __new_start 
= _M_allocate(__len);
         iterator __new_finish 
= __new_start;
         __STL_TRY 
...{
         __new_finish 
= uninitialized_copy
         (_M_start, __position, __new_start);
         construct(__new_finish, __x);
         
++__new_finish;
         __new_finish 
= uninitialized_copy
        (__position, _M_finish, __new_finish);
        }

        __STL_UNWIND((destroy(__new_start,__new_finish), 
                  _M_deallocate(__new_start,__len)));
       destroy(begin(), end());
       _M_deallocate(_M_start, _M_end_of_storage 
- _M_start);
       _M_start 
= __new_start;
       _M_finish 
= __new_finish;
       _M_end_of_storage 
= __new_start + __len;
       }

       }

 

       从提取的vector代码,Part1可看出,push_back的操作行为.
       兵分两路,可是再向下看,你会发现,无一例外,都
       通过const _Tp& 进行拷贝行为,那么从auto_ptr提出的片段就
       派上用场了.
       可你知道的,auto_ptr总是坚持对对象的独权.那必须修改
       原来维护的对象,而vector行为要求const _Tp&,这样自然会产生
       问题.一般编译器是可以发觉这种错误的.

       其实,STL所有的容器类都采用const _Tp&策略.
 
       //+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
      + 看了sutter和Josuttis的两篇文章中,都提及:                    +
      + STL容器不支持auto_ptr原因在于copy的对象只是获得所有权的对象, +
      + 这种对象不符合STL的要求.可是本人总感觉即时不是真正的复制对象,+
      + 但我用vector<auto_ptr<x> >的目的就在于维护对象,并不在乎      +
      + 所谓的完全对象.而且我用自己写的Smart Pointer配合STL容器工作, +
      + 很正常.那需要注意的仅仅是const问题.                          +
      +                                                              +
      //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

     no3.
        这个也是auto_ptr隐含的所有权问题引起的.
        const auto_ptr不允许修改.
        随便提及:const对象不代表对象一点不可以改变.
                  在两种const语义下,都有方法修改对象或对象内部指针维护的对象
                 或其它资源.
     no4.
        再看auto_ptr的构析函数.
        delete不可以消除栈上资源.

     no5.
        依赖传入对象指针的构造函数被声明为explicit,禁止隐式转换.

   
    3.auto_ptr高级使用指南
     
      a.类成员auto_ptr,禁止构造函数以构建"完全对象"

 

Programme1:
        
struct  Structx ... {
               
int m_Idata;
               
char m_CHRdata;
               
/**//* and so on */
        }
;
        出于对象编程的理念,
        我们将Structx打造成包裹类:
        
class  StructWrapper ... {
        
private:
        Structx
* m_STRTxptr;
        
public:
        StructWrapper():m_STRTxptr(
new Structx)...{}
        
~StructWrapper()...{delete m_SMRTxptr; }
        
public:
        
void Soperator1().../**//* 针对Structx对象的特性操作 */}
        
void Soperator2().../**//* 针对Structx对象的特性操作 */}        
        
/**//*  and so on */
        }

        
        Programme2:
        
class  StructWrapper ... {
        
private:
        auto_ptr
<Structx> m_SMPTRx;
        
public:
        StructWrapper():m_SMPTRAx(
new Structx)...{}
        
public:
        
void Soperator1().../**//* 针对Structx对象的特性操作 */}
        
void Soperator2().../**//* 针对Structx对象的特性操作 */}        
        
/**//*  and so on */
        }

        
        Programme3:
        StructWrapper::StructWrapper(
const  StructWrapper &  other)
        : M_SMPTRx(
new  Struct( * other.m_SMPTRx))  ... { }
        StructWrapper
&  StructWrapper:: operator = ( const  StructWrapper  & other) ... {
        
*m_SMPTRx = *other.m_SMPTRx;
        }
;


                处于对构建于堆中的对象(new Structx)智能维护的需要.
        我们将programme1改造为programme2:
        不错,对象是可以智能维护了.
        对于包裹类(StructWrapper)你是否会有这样的构造或指派操作:
         StructWrapper m_SMPTRWrapper2(m_SMPTRWrapper1);
      
         StructWrapper mSMPTRWrapper2 = m_SMPTRWrapper1;
         那么请注意:
         当你坦然的来一个:M_SMPTRWrapper1->Soperator1();的时候,
         系统崩溃了.
         不必惊讶,所有权还是所有权问题.
         问一下自己:当programme2默认拷贝构造函数作用时,又调用了auto_ptr的
         默认构造函数,那么auto_ptr所有的默认行为都遵循独权策略.对,就这样.
         m_SMPTRWrapper1的对象所有权转移给了m_SMPTRWrapper2.
         M_SMPTRWrapper1->Soperator1();那么操作变成了在NULL上的.
         哦!系统不崩溃才怪.
         那么你需要想,programme3那样利用auto_ptr的提领操作符自己的
         构造"完全对象".

       b.利用const关键字,防止不经意的权限转移
        
         从上面的叙述,你可看出,所有权转移到处可以酿成大祸.
         而对于一般应用来说,独权又是很好的安全性策略.
         那么我们就用const来修饰auto_ptr,禁止不经意的错误.
       
         当然上面提及:并不代表auto_ptr是不可修改的.
         处于需要,从两种const语义,你都可实现修改.

         然,你还希望在函数传入传出auto_ptr那么你可传递auto_ptr的引用,
         那就万无一失了: void fook(const auto_ptr<x>& m_PARAMin);
         在返回后赋予其它时,使用引用是不行的.你得用指针.
         因为引用无论作为lvalue还是rvaluev,都会调用构造或指派函数.


    4.你是否觉得std::auto_ptr还不够完美
     
      在实践中,std::auto_ptr能满足你的需求吗?          
 
      Andrei Alexandrescu在一篇文章中,提及:有关Smart Pointer的技术就像
      巫术.Smart Pointer作为C++垃圾回收机制的核心,它必须足够强大的、具有工业强度和安全性.
      但为了可一劳永逸我们还需要披荆斩棘继续探索.

      下面在需求层面上,我们思索一下我们的智能指针还需要些什么?
 
        a. std::auto_ptr 能够处理数组吗?我们可以用智能指针来管理其它的资源吗?
           譬如一个线程句柄、一个文件句柄 and so on !
        b. 对于我们的对象真的永远实行独权政策吗?
        c. Our 智能指针还需要在继承和虚拟层面上发挥威力 !
        d. 往往,需要扩展Our 智能指针的功能成员函数来满足动态的需要 !
        e. 也许,你需要的还很多.

你可能感兴趣的:(剖析C++标准库智能指针(std::auto_ptr))