POJ3243 Clever Y

对于任意正整数x,z,p,求满足x ^ y = z (mod p) 的最小的y

对Babystep_Giantstep算法的扩展

详细证明请参考http://blog.csdn.net/tsaid/article/details/7354716


#include <cstdio>
#include <cmath>
#include <vector>
using namespace std;
typedef long long ll;

const int NN = 50000;
struct Node
{
    int i;
    ll xi;
    Node(int a,ll b):i(a),xi(b){}
};
vector<Node> hash[NN];

ll pow_mod(ll x, ll y, ll p)
{
    ll res = 1LL;
    while (y)
    {
        if (y&1) res = (res * x) % p;
        x = (x * x) % p;
        y >>= 1;
    }
    return res;
}

ll gcd(ll a, ll b) {return b==0 ? a:gcd(b,a%b);}
ll exgcd(ll a, ll b, ll &x, ll &y)
{
    if (b==0) {x=1; y=0; return a;}
    ll res = exgcd(b,a%b,x,y);
    ll t=x; x=y; y=t-a/b*y;
    return res;
}

ll Babystep_Giantstep(ll x, ll z, ll p)
{
    z %= p;
    ll val = 1;
    for (int i=0;i<=100;i++,val=(val*x)%p)
        if (val==z) return i;
    ll q=1, cnt=0;
    while ((val = gcd(x,p)) != 1)
    {
        if (z%val) return -1;
        p/=val; z/=val; q=q*x/val%p;
        cnt++;
    }

    ll m = (ll)sqrt((double)p);
    for (int i=0;i<NN;i++) hash[i].clear();
    val = 1;
    for (int i=0;i<=m;i++)
    {
        int vv = val % NN;
        hash[vv].push_back(Node(i,val));
        val = (val * x) % p;
    }

    ll xm = pow_mod(x,m,p), a, b;
    for (int i=0;i<=m;i++)
    {
        exgcd(q,p,a,b);
        val = ((z*a)%p+p)%p;
        ll vv = val % NN;
        for (int j=0;j<hash[vv].size();j++)
            if (hash[vv][j].xi == val)
                return i*m+hash[vv][j].i+cnt;
        q=(q*xm)%p;
    }
    return -1;
}

int main()
{
    ll x,y,z,p;
    while (scanf("%I64d%I64d%I64d",&x,&p,&z)==3 && p)
    {
        y = Babystep_Giantstep(x,z,p);
        if (y == -1) puts("No Solution");
        else printf("%I64d\n",y);
    }
    return 0;
}


你可能感兴趣的:(POJ3243 Clever Y)