- nlp技术
tqs_12345
人工智能自然语言处理
自然语言处理(NaturalLanguageProcessing,NLP)技术是一种计算机科学与人工智能的交叉领域,涉及机器对人类语言进行处理和理解的能力。以下是一些常见的NLP技术的示例:1.机器翻译:NLP技术可以帮助机器将一种语言翻译成另一种语言。例如,谷歌翻译使用NLP技术实现自动翻译,用户可以输入一段文本,然后谷歌翻译会自动将其翻译成其他语言。2.文本分类:NLP技术可以将文本分类到不同
- spiking neural network概念学习
Zaгathustra
科研工作深度学习神经网络机器学习
我们认为,SNNs最大的优势在于其能够充分利用基于时空事件的信息。今天,我们有相当成熟的神经形态传感器,来记录环境实时的动态改变。这些动态感官数据可以与SNNs的时间处理能力相结合,以实现超低能耗的计算。在此类传感器中使用SNNs主要受限于缺乏适当的训练算法,从而可以有效地利用尖峰神经元的时间信息。实际上就精度而言,在大多数学习任务中SNNs的效果仍落后于第二代的深度学习。很明显,尖峰神经元可以实
- 《一文吃透!NLTK与SpaCy,自然语言处理的神兵利器》
人工智能深度学习
在人工智能的璀璨星空中,自然语言处理(NLP)无疑是最为耀眼的领域之一。它让机器能够理解、处理和生成人类语言,极大地推动了智能交互的发展。而在Python的NLP工具库中,NLTK和SpaCy就像两把锋利的宝剑,各自散发着独特的光芒。今天,就让我们深入探究这两款工具的使用技巧与优势,为你的NLP之旅增添强大助力。一、NLTK:自然语言处理的瑞士军刀NLTK(NaturalLanguageToolk
- 架构设计系列(四):设计模式
Resean0223
架构设计SystemDesign101设计模式java系统架构架构
一、概述 设计模式是软件开发中常见问题的可重用解决方案,它们为构建更好的软件提供了蓝图。它们不是具体的代码,而是一种设计思想或模板,可以帮助开发人员更高效地构建可维护、可扩展的软件。二、开发必须掌握的18个关键的设计模式2.1设计模式的分类创建型模式(CreationalPatterns)解决对象创建的问题,提供灵活的对象创建机制。结构型模式(StructuralPatterns)解决类和对象的组
- 使用神经架构搜索(Neural Architecture Search, NAS)自动化设计高效深度学习模型的技术详解
瑕疵
热点资讯
博客主页:瑕疵的CSDN主页Gitee主页:瑕疵的gitee主页⏩文章专栏:《热点资讯》使用神经架构搜索(NeuralArchitectureSearch,NAS)自动化设计高效深度学习模型的技术详解使用神经架构搜索(NeuralArchitectureSearch,NAS)自动化设计高效深度学习模型的技术详解使用神经架构搜索(NeuralArchitectureSearch,NAS)自动化设计高
- 可可泛基因组-文献精读112
让学习成为一种生活方式
生物信息学泛基因组基因组泛基因组
GenomicstructuralvariantsconstrainandfacilitateadaptationinnaturalpopulationsofTheobromacacao,thechocolatetree基因组结构变异在可可树(Theobromacacao)自然种群中的适应性限制与促进作用意义基因组结构变异(SVs)是适应和物种形成的重要因素,但我们对其整体适应性后果的理解仍然有限
- PS931 Bayesian Approaches to Behavioural Science
后端
DataAnalysisAssignmentPS931-BayesianApproachestoBehaviouralScienceSpringTerm2025(updated:2024-11-27)•Thisassessmentcountsfor42%ofyouroverallgrade.•SubmissionInstructions:Submityoursolutionasonehtmlorp
- cnn以及例子
阿拉斯攀登
机器学习cnn人工智能神经网络
cnnCNN即卷积神经网络(ConvolutionalNeuralNetwork),是一种专门为处理具有网格结构数据(如图像、音频)而设计的深度学习模型,在计算机视觉、语音识别等诸多领域都有广泛应用。以下是CNN的详细介绍:基本原理卷积层:是CNN的核心组成部分,通过卷积核在数据上滑动进行卷积操作,自动提取数据中的局部特征。例如,在处理图像时,卷积核可以检测图像中的边缘、线条等简单特征。卷积操作大
- 【论文解读】神经网络就像“数学乐高积木”:多层前馈网络如何用简单函数拼接复杂世界
神经美学茂森
无痛入门神经网络神经网络网络人工智能
K.Hornik,M.Stinchcombe,andH.White.Multilayerfeed-forwardnetworksareuniversalapproximators.NeuralNet-works,2(5):359-366,1989论文解读神经网络就像“数学乐高积木”:多层前馈网络如何用简单函数拼接复杂世界第一节:通俗解释——万能近似定理的核心思想万能近似定理(UniversalAp
- 【Transformer】小白入门指南
静静喜欢大白
随记医疗影像transformer深度学习人工智能
目录1、简介2、Transformer解决问题技术概览核心组成自注意力机制(Self-AttentionMechanism)多头注意力机制(Multi-HeadAttention)前馈神经网络(Feed-ForwardNeuralNetwork)位置编码(PositionalEncoding)残差连接与标准化框架认识1.输入输出2.Encoder3.Decoder4.训练过程5.Positione
- 华为 MindStudio 安装指南
丰年稻香
人工智能python人工智能
1.MindStudio介绍华为MindStudio是一款集成开发环境(IDE),用于AscendAI处理器的开发调试。它支持模型训练、推理、算子开发、性能优化等AI任务,并依赖CANN(ComputeArchitectureforNeuralNetworks)作为计算架构基础。本指南介绍如何在KunLunG2280服务器上安装MindStudio,包括环境准备、依赖安装、CANN安装及MindS
- 人工智能之自然语言处理技术演进
香橙薄荷心
AI人工智能自然语言处理
自然语言处理技术演进自然语言处理(NaturalLanguageProcessing,NLP)是人工智能的重要分支,旨在使计算机能够理解、生成和处理人类语言。近年来,NLP技术经历了从规则驱动到数据驱动的革命性演进,尤其是在深度学习和大规模预训练模型的推动下,取得了显著突破。本文将深入探讨NLP技术的演进历程、核心模型及其应用,并通过具体案例和代码示例帮助读者理解其实际应用。1.NLP技术演进历程
- 自然语言处理(NLP)入门:基础概念与应用场景
Ash Butterfield
nlp自然语言处理人工智能
什么是自然语言处理(NLP)?自然语言处理(NaturalLanguageProcessing,NLP)是人工智能(AI)的一个重要分支,研究如何让计算机理解、生成、分析和与人类语言进行交互。换句话说,NLP是让机器像人一样“读、写、听、说”的技术,它结合了语言学、机器学习、计算机科学等多学科知识。NLP的核心目标是将非结构化的自然语言(如文本和语音)转化为结构化数据,使机器能够高效处理、分析和生
- Revizor:CPU微架构泄露模糊测试工具指南
裴剑苹
Revizor:CPU微架构泄露模糊测试工具指南sca-fuzzerRevizor-afuzzertosearchformicroarchitecturalleaksinCPUs项目地址:https://gitcode.com/gh_mirrors/sc/sca-fuzzer1.目录结构及介绍Microsoft的sca-fuzzer,也称为Revizor,是一款专门用于检测CPU中潜在的信息泄漏(
- N-Beats:一种用于时间序列预测的纯前馈神经网络模型
TIM老师
神经网络人工智能深度学习
介绍N-Beats(NeuralBasisExpansionAnalysisforInterpretableTimeSeriesForecasting)是一种基于纯前馈神经网络的时间序列预测模型,由BorisOreshkin等人在2019年提出。与传统的递归神经网络(如LSTM和GRU)不同,N-Beats通过堆叠多个简单的前馈块来生成预测,具有高度的可解释性和灵活性。工作原理模型架构N-Beat
- DeepSeek图神经网络(Graph Neural Networks, GNNs)基础与实践
Evaporator Core
Python开发经验深度学习DeepSeek快速入门神经网络人工智能深度学习
图神经网络(GraphNeuralNetworks,GNNs)是一种专门用于处理图结构数据的深度学习模型。与传统的神经网络不同,GNNs能够捕捉节点之间的关系和图的全局结构,广泛应用于社交网络分析、推荐系统、化学分子建模等领域。DeepSeek提供了强大的工具和API,帮助我们高效地构建和训练图神经网络。本文将详细介绍如何使用DeepSeek进行图神经网络的基础与实践,并通过代码示例帮助你掌握这些
- Unity Shader Graph 2D - Procedural程序化形状之波形
HahaGiver666
UnityShaderGraph2Dunity游戏引擎着色器
在UnityShaderGraph中,可以通过节点来构建一些程序化的图形形状,本文将通过使用ShaderGraph中的节点来创建一个圆状的波形动画图形,从而进一步的来实践和应用ShaderGraph的节点。创建基础的圆状波形图需要使用到的节点有PolarCoordinates即极坐标,该坐标以半径为X轴,然后某一半径转一圈即为该X值的Y轴。由于我们要实现圆状波形图,那么就需要用到Y轴,将极坐标使用
- 深度神经网络(Deep Neural Networks, DNNs)
CaiGuoHui1
dnn神经网络深度学习人工智能
引言(1)简介:什么是深度神经网络?深度神经网络(DeepNeuralNetworks,DNNs)是机器学习的一种复杂形式,属于广义的人工神经网络(ArtificialNeuralNetworks,ANNs)的范畴。它们设计用来模仿人类大脑的处理方式,通过多层(即“深度”)的神经元结构处理数据,从而解决各种复杂的数据驱动问题。这些网络通过多个隐藏层连接输入和输出层,每层都包含多个神经元,这些神经元
- 了解深度神经网络模型(Deep Neural Networks, DNN)
huaqianzkh
未来技术dnn人工智能神经网络
深度神经网络模型(DeepNeuralNetworks,DNN)深度神经网络模型是一种包含多个隐藏层的神经网络,能够通过多层次的非线性变换从数据中提取复杂特征,广泛应用于图像识别、自然语言处理等领域。基本结构输入层:接收原始数据。隐藏层:包含多个层,每层有多个神经元,通过非线性激活函数处理数据。输出层:生成最终预测或分类结果。主要特点多层次结构:通过多个隐藏层逐步提取高层次特征。非线性变换:使用激
- 10. 神经网络(二.多层神经网络模型)
啊波次得饿佛哥
AI人工智能神经网络人工智能深度学习
多层神经网络(Multi-LayerNeuralNetwork),也称为深度神经网络(DeepNeuralNetwork,DNN),是机器学习中一种重要的模型,能够通过多层次的非线性变换解决复杂的分类、回归和模式识别问题。以下是其详细介绍:1.基本概念多层神经网络由多个层(Layer)堆叠而成,包括:输入层(InputLayer):接收原始数据(如图像像素、文本向量等)。隐藏层(HiddenLay
- 神经网络(Neural Network)
ningmengjing_
神经网络深度学习人工智能
引言神经网络,作为人工智能和机器学习领域的核心组成部分,近年来在诸多领域取得了显著的进展。受生物神经系统的启发,神经网络通过模拟人脑神经元的工作机制,能够从大量数据中学习复杂的模式和关系。其强大的非线性建模能力使其在图像识别、自然语言处理、语音识别和预测分析等任务中表现出色。神经网络的基本构建单元是神经元,每个神经元接收多个输入信号,通过加权求和并应用激活函数来生成输出。通过将这些神经元分层组织,
- Neural Radiance Fields (NeRF) 和 3D Gaussian Splatting区别
鬼马行天
深度学习/AIGC3dAIGC
NeuralRadianceFields(NeRF)和3DGaussianSplatting是两种用于3D场景重建和渲染的技术。它们都旨在创建高质量的3D图像,但它们的技术原理和应用场景有所不同。1.NeuralRadianceFields(NeRF)NeRF使用深度学习技术,特别是一种密集的神经网络(通常是多层感知机,MLP),来建模复杂的3D场景。它通过训练一个神经网络来预测给定3D位置和观察
- FaceLit: Neural 3D Relightable Faces 项目教程
孙双曙Janet
FaceLit:Neural3DRelightableFaces项目教程ml-facelitOfficialrepositoryofFaceLit:Neural3DRelightableFaces(CVPR2023)项目地址:https://gitcode.com/gh_mirrors/ml/ml-facelit1.项目介绍FaceLit:Neural3DRelightableFaces是由App
- NeRF与3D Gaussian的异同对比
zllz0907
视觉SLAMNeRF与3DGS3d人工智能深度学习
NeRF(NeuralRadianceFields)和3DGaussianSplatting是两种不同的3D场景表示与渲染技术,分属两个派系。那他两有啥区别呢?核心区别在于场景的表示方式、优化目标及渲染效率。1.核心区别特性NeRF3DGaussianSplatting表示方式隐式表示:通过神经网络(MLP)学习场景的辐射场(颜色和密度)。显式表示:用3D高斯分布显式建模场景中的点云或粒子。优化目
- Android车机DIY开发之软件篇(十二)编译Automotive OS错误(3)
勿忘初心91
车机DIYandroidarm开发嵌入式硬件经验分享
Android车机DIY开发之软件篇(十二)编译AutomotiveOS错误(3)问题[85%113538/132897]//hardware/interfaces/neuralnetworks/1.1/utils:neuralnetworks_utils_hal_1_1clang++src/Device.cpp[85%113539/132897]//hardware/interfaces/neu
- XVIII Open Cup named after E.V. Pankratiev. GP of Urals
weixin_33738578
ui
A.Nutella’sLife斜率优化DP显然,CDQ分治后按$a$排序建线段树,每层维护凸包,查询时不断将队首弹出即可。时间复杂度$O(n\log^2n)$。#include#includeusingnamespacestd;typedeflonglongll;typedefpairP;constintN=100010,M=262150;intn,i,a[N],cb;llf[N],g[N],w[
- coarse-to-fine(1) CF-DRNet
momoka9
论文笔记python
1、Coarse-to-fineclassificationfordiabeticretinopathygradingusingconvolutionalneuralnetwork使用卷积神经网络对糖尿病视网膜病变分级进行从粗到细的分类。ArtificialIntelligenceinMedicineVolume108,August2020,101936亮点首次提出了一个分层的从粗到细的糖尿病视网
- 翻译模型
daisy190127
翻译模型
翻译模型发展史1980年,提出基于规则的翻译1993年,IBM提出基于词的统计翻译模型2003年,Koehn提出基于短语的统计翻译模型2014年,谷歌和蒙特利尔大学提出端到端神经网络机器翻译,SequencetoSequenceLearningwithNeuralNetworks和LearningPhraseRepresentationsusingRNNEncoder–DecoderforStat
- PyTorch深度学习实战(42)——图像字幕生成
盼小辉丶
深度学习pytorch人工智能
PyTorch深度学习实战(42)——图像字幕生成0.前言1.图像字幕1.1基本概念1.2模型分析1.3数据集分析2.图像字幕生成模型小结系列链接0.前言图像字幕生成(Imagecaptioning)模型是一种将图像与对应描述文字关联起来的神经网络模型,其主要目标是根据给定的图像生成描述性的自然语言字幕。模型通常由两个主要组件,卷积神经网络(ConvolutionalNeuralNetwork,C
- 【深度学习】不同领域中对于token的理解
小小小小祥
深度学习easyui人工智能算法
在计算机科学中,“Token”这个术语通常指一串字符或符号在安全领域,它常常指代密钥或访问令牌在自然语言处理(NLP)中,Token通常是文本处理的最小单元,可能是一个单词、词组,或者一个符号如何理解token?假设要让AI识别一句话:"Ilovenaturallanguageprocessing!"对于机器来说,它并不会直接理解这句话的含义,而是需要先将这句话拆解成一个个Token单元进行处理。
- jvm调优总结(从基本概念 到 深度优化)
oloz
javajvmjdk虚拟机应用服务器
JVM参数详解:http://www.cnblogs.com/redcreen/archive/2011/05/04/2037057.html
Java虚拟机中,数据类型可以分为两类:基本类型和引用类型。基本类型的变量保存原始值,即:他代表的值就是数值本身;而引用类型的变量保存引用值。“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置。
- 【Scala十六】Scala核心十:柯里化函数
bit1129
scala
本篇文章重点说明什么是函数柯里化,这个语法现象的背后动机是什么,有什么样的应用场景,以及与部分应用函数(Partial Applied Function)之间的联系 1. 什么是柯里化函数
A way to write functions with multiple parameter lists. For instance
def f(x: Int)(y: Int) is a
- HashMap
dalan_123
java
HashMap在java中对很多人来说都是熟的;基于hash表的map接口的非同步实现。允许使用null和null键;同时不能保证元素的顺序;也就是从来都不保证其中的元素的顺序恒久不变。
1、数据结构
在java中,最基本的数据结构无外乎:数组 和 引用(指针),所有的数据结构都可以用这两个来构造,HashMap也不例外,归根到底HashMap就是一个链表散列的数据
- Java Swing如何实时刷新JTextArea,以显示刚才加append的内容
周凡杨
java更新swingJTextArea
在代码中执行完textArea.append("message")后,如果你想让这个更新立刻显示在界面上而不是等swing的主线程返回后刷新,我们一般会在该语句后调用textArea.invalidate()和textArea.repaint()。
问题是这个方法并不能有任何效果,textArea的内容没有任何变化,这或许是swing的一个bug,有一个笨拙的办法可以实现
- servlet或struts的Action处理ajax请求
g21121
servlet
其实处理ajax的请求非常简单,直接看代码就行了:
//如果用的是struts
//HttpServletResponse response = ServletActionContext.getResponse();
// 设置输出为文字流
response.setContentType("text/plain");
// 设置字符集
res
- FineReport的公式编辑框的语法简介
老A不折腾
finereport公式总结
FINEREPORT用到公式的地方非常多,单元格(以=开头的便被解析为公式),条件显示,数据字典,报表填报属性值定义,图表标题,轴定义,页眉页脚,甚至单元格的其他属性中的鼠标悬浮提示内容都可以写公式。
简单的说下自己感觉的公式要注意的几个地方:
1.if语句语法刚接触感觉比较奇怪,if(条件式子,值1,值2),if可以嵌套,if(条件式子1,值1,if(条件式子2,值2,值3)
- linux mysql 数据库乱码的解决办法
墙头上一根草
linuxmysql数据库乱码
linux 上mysql数据库区分大小写的配置
lower_case_table_names=1 1-不区分大小写 0-区分大小写
修改/etc/my.cnf 具体的修改内容如下:
[client]
default-character-set=utf8
[mysqld]
datadir=/var/lib/mysql
socket=/va
- 我的spring学习笔记6-ApplicationContext实例化的参数兼容思想
aijuans
Spring 3
ApplicationContext能读取多个Bean定义文件,方法是:
ApplicationContext appContext = new ClassPathXmlApplicationContext(
new String[]{“bean-config1.xml”,“bean-config2.xml”,“bean-config3.xml”,“bean-config4.xml
- mysql 基准测试之sysbench
annan211
基准测试mysql基准测试MySQL测试sysbench
1 执行如下命令,安装sysbench-0.5:
tar xzvf sysbench-0.5.tar.gz
cd sysbench-0.5
chmod +x autogen.sh
./autogen.sh
./configure --with-mysql --with-mysql-includes=/usr/local/mysql
- sql的复杂查询使用案列与技巧
百合不是茶
oraclesql函数数据分页合并查询
本片博客使用的数据库表是oracle中的scott用户表;
------------------- 自然连接查询
查询 smith 的上司(两种方法)
&
- 深入学习Thread类
bijian1013
javathread多线程java多线程
一. 线程的名字
下面来看一下Thread类的name属性,它的类型是String。它其实就是线程的名字。在Thread类中,有String getName()和void setName(String)两个方法用来设置和获取这个属性的值。
同时,Thr
- JSON串转换成Map以及如何转换到对应的数据类型
bijian1013
javafastjsonnet.sf.json
在实际开发中,难免会碰到JSON串转换成Map的情况,下面来看看这方面的实例。另外,由于fastjson只支持JDK1.5及以上版本,因此在JDK1.4的项目中可以采用net.sf.json来处理。
一.fastjson实例
JsonUtil.java
package com.study;
impor
- 【RPC框架HttpInvoker一】HttpInvoker:Spring自带RPC框架
bit1129
spring
HttpInvoker是Spring原生的RPC调用框架,HttpInvoker同Burlap和Hessian一样,提供了一致的服务Exporter以及客户端的服务代理工厂Bean,这篇文章主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
在
【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中
- 【Mahout二】基于Mahout CBayes算法的20newsgroup的脚本分析
bit1129
Mahout
#!/bin/bash
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information re
- nginx三种获取用户真实ip的方法
ronin47
随着nginx的迅速崛起,越来越多公司将apache更换成nginx. 同时也越来越多人使用nginx作为负载均衡, 并且代理前面可能还加上了CDN加速,但是随之也遇到一个问题:nginx如何获取用户的真实IP地址,如果后端是apache,请跳转到<apache获取用户真实IP地址>,如果是后端真实服务器是nginx,那么继续往下看。
实例环境: 用户IP 120.22.11.11
- java-判断二叉树是不是平衡
bylijinnan
java
参考了
http://zhedahht.blog.163.com/blog/static/25411174201142733927831/
但是用java来实现有一个问题。
由于Java无法像C那样“传递参数的地址,函数返回时能得到参数的值”,唯有新建一个辅助类:AuxClass
import ljn.help.*;
public class BalancedBTree {
- BeanUtils.copyProperties VS PropertyUtils.copyProperties
诸葛不亮
PropertyUtilsBeanUtils
BeanUtils.copyProperties VS PropertyUtils.copyProperties
作为两个bean属性copy的工具类,他们被广泛使用,同时也很容易误用,给人造成困然;比如:昨天发现同事在使用BeanUtils.copyProperties copy有integer类型属性的bean时,没有考虑到会将null转换为0,而后面的业
- [金融与信息安全]最简单的数据结构最安全
comsci
数据结构
现在最流行的数据库的数据存储文件都具有复杂的文件头格式,用操作系统的记事本软件是无法正常浏览的,这样的情况会有什么问题呢?
从信息安全的角度来看,如果我们数据库系统仅仅把这种格式的数据文件做异地备份,如果相同版本的所有数据库管理系统都同时被攻击,那么
- vi区段删除
Cwind
linuxvi区段删除
区段删除是编辑和分析一些冗长的配置文件或日志文件时比较常用的操作。简记下vi区段删除要点备忘。
vi概述
引文中并未将末行模式单独列为一种模式。单不单列并不重要,能区分命令模式与末行模式即可。
vi区段删除步骤:
1. 在末行模式下使用:set nu显示行号
非必须,随光标移动vi右下角也会显示行号,能够正确找到并记录删除开始行
- 清除tomcat缓存的方法总结
dashuaifu
tomcat缓存
用tomcat容器,大家可能会发现这样的问题,修改jsp文件后,但用IE打开 依然是以前的Jsp的页面。
出现这种现象的原因主要是tomcat缓存的原因。
解决办法如下:
在jsp文件头加上
<meta http-equiv="Expires" content="0"> <meta http-equiv="kiben&qu
- 不要盲目的在项目中使用LESS CSS
dcj3sjt126com
Webless
如果你还不知道LESS CSS是什么东西,可以看一下这篇文章,是我一朋友写给新人看的《CSS——LESS》
不可否认,LESS CSS是个强大的工具,它弥补了css没有变量、无法运算等一些“先天缺陷”,但它似乎给我一种错觉,就是为了功能而实现功能。
比如它的引用功能
?
.rounded_corners{
- [入门]更上一层楼
dcj3sjt126com
PHPyii2
更上一层楼
通篇阅读完整个“入门”部分,你就完成了一个完整 Yii 应用的创建。在此过程中你学到了如何实现一些常用功能,例如通过 HTML 表单从用户那获取数据,从数据库中获取数据并以分页形式显示。你还学到了如何通过 Gii 去自动生成代码。使用 Gii 生成代码把 Web 开发中多数繁杂的过程转化为仅仅填写几个表单就行。
本章将介绍一些有助于更好使用 Yii 的资源:
- Apache HttpClient使用详解
eksliang
httpclienthttp协议
Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们再讨论),它不仅是客户端发送Http请求变得容易,而且也方便了开发人员测试接口(基于Http协议的),即提高了开发的效率,也方便提高代码的健壮性。因此熟练掌握HttpClient是很重要的必修内容,掌握HttpClient后,相信对于Http协议的了解会
- zxing二维码扫描功能
gundumw100
androidzxing
经常要用到二维码扫描功能
现给出示例代码
import com.google.zxing.WriterException;
import com.zxing.activity.CaptureActivity;
import com.zxing.encoding.EncodingHandler;
import android.app.Activity;
import an
- 纯HTML+CSS带说明的黄色导航菜单
ini
htmlWebhtml5csshovertree
HoverTree带说明的CSS菜单:纯HTML+CSS结构链接带说明的黄色导航
在线体验效果:http://hovertree.com/texiao/css/1.htm代码如下,保存到HTML文件可以看到效果:
<!DOCTYPE html >
<html >
<head>
<title>HoverTree
- fastjson初始化对性能的影响
kane_xie
fastjson序列化
之前在项目中序列化是用thrift,性能一般,而且需要用编译器生成新的类,在序列化和反序列化的时候感觉很繁琐,因此想转到json阵营。对比了jackson,gson等框架之后,决定用fastjson,为什么呢,因为看名字感觉很快。。。
网上的说法:
fastjson 是一个性能很好的 Java 语言实现的 JSON 解析器和生成器,来自阿里巴巴的工程师开发。
- 基于Mybatis封装的增删改查实现通用自动化sql
mengqingyu
DAO
1.基于map或javaBean的增删改查可实现不写dao接口和实现类以及xml,有效的提高开发速度。
2.支持自定义注解包括主键生成、列重复验证、列名、表名等
3.支持批量插入、批量更新、批量删除
<bean id="dynamicSqlSessionTemplate" class="com.mqy.mybatis.support.Dynamic
- js控制input输入框的方法封装(数字,中文,字母,浮点数等)
qifeifei
javascript js
在项目开发的时候,经常有一些输入框,控制输入的格式,而不是等输入好了再去检查格式,格式错了就报错,体验不好。 /** 数字,中文,字母,浮点数(+/-/.) 类型输入限制,只要在input标签上加上 jInput="number,chinese,alphabet,floating" 备注:floating属性只能单独用*/
funct
- java 计时器应用
tangqi609567707
javatimer
mport java.util.TimerTask; import java.util.Calendar; public class MyTask extends TimerTask { private static final int
- erlang输出调用栈信息
wudixiaotie
erlang
在erlang otp的开发中,如果调用第三方的应用,会有有些错误会不打印栈信息,因为有可能第三方应用会catch然后输出自己的错误信息,所以对排查bug有很大的阻碍,这样就要求我们自己打印调用的栈信息。用这个函数:erlang:process_display (self (), backtrace).需要注意这个函数只会输出到标准错误输出。
也可以用这个函数:erlang:get_s