【莫比乌斯反演】[HYSBZ\BZOJ2154]Crash的数字表格

题目
题目大意就是求 ni=1mj=1lcm(i,j) .
分析:

ans=i=1nj=1mlcm(i,j)=i=1nj=1mijgcd(i,j)

枚举d=gcd(i,j),
f(n,m,k)=1<=i<=n1<=j<=mgcd(i,j)=kij

显然可以得到
ans=d=1min(n,,m)d2f(nd,md,1)d=d=1min(n,,m)df(nd,md,1)

即算出除以d后互质的对数,两个数都乘d的乘积就得到了两个数的乘积,在除以d就是他们的最小公倍数。
那怎么求f呢
sum(x,y)=1<=i<=x1<=j<=yij=x(x+1)2y(y+1)2

F(x,y,k)=1<=i<=x1<=j<=yk|gcd(i,j)ij=k2sum(nkmk)=k|df(i,j,d)

f(x,y,k)=k|dμ(dk)F(x,y,d)

所以
f(x,y,1)=k=1min(m,n)μ(k)F(x,y,k)=k=1min(x,y)μ(k)k2sum(xkyk)=k=1min(x,y)μ(k)k2xk(xk+1)2yk(yk+1)2

然后运用分块优化求出ans即可(可参考 [HYSBZ/BZOJ2301]Problem b中的分块优化)

#include<cstdio>
#include<algorithm>
using namespace std;
#define MAXN 10000000
#define MOD 20101009
#define Sum(x,y) (1ll*x*(x+1)/2%MOD*(1ll*y*(y+1)/2%MOD)%MOD)
int mu[MAXN+10],p[MAXN+10],pcnt,sum[MAXN+10],n,m,ans;
bool f[MAXN+10];
void prepare(){
    int i,j,t=min(n,m);
    mu[1]=sum[1]=1;
    for(i=2;i<=t;i++){
        if(!f[i])
            p[++pcnt]=i,mu[i]=-1;
        for(j=1;p[j]*i<=t;j++){
            f[i*p[j]]=1;
            if(i%p[j]==0){
                mu[i*p[j]]=0;
                break;
            }   
            mu[i*p[j]]=-mu[i];
        }
        sum[i]=(sum[i-1]+1ll*i*i*mu[i])%MOD;
    }
}
void Read(int &x){
    char c;
    while(c=getchar(),~c)
        if(c>='0'&&c<='9'){
            x=c-'0';
            while(c=getchar(),c>='0'&&c<='9')
                x=x*10+c-'0';
            ungetc(c,stdin);
            return;
        }
}
int calf(int n,int m){
    int t=min(n,m),i,last,ret=0;
    for(i=1;i<=t;i=last+1){
        last=min(n/(n/i),m/(m/i));
        ret=(ret+((sum[last]-sum[i-1])%MOD*Sum(n/i,m/i))%MOD+MOD)%MOD; } return ret; } void solve(){ int t=min(n,m),i,last; for(i=1;i<=t;i=last+1){ last=min(n/(n/i),m/(m/i));
        ans=(ans+1ll*(i+last)*(last-i+1)/2%MOD*calf(n/i,m/i))%MOD; } } int main() { Read(n),Read(m); prepare(); solve(); printf("%d\n",ans); }

你可能感兴趣的:(C++,数论,gcd,bzoj,莫比乌斯反演)