- MyBatis 简介
hweiyu00
技术栈杂谈mybatis
MyBatis简介MyBatis是一款优秀的持久层框架,它支持定制化SQL、存储过程以及高级映射,能够帮助开发者将Java对象与数据库表进行灵活映射,简化数据持久化操作。以下从多个维度详细介绍MyBatis:一、核心定位与优势轻量级框架:相比Hibernate等全自动ORM框架,MyBatis更“轻”,开发者需手动编写SQL语句,灵活性更高,便于优化性能。ORM映射功能:通过XML或注解方式,将J
- AingDesk开源免费的本地 AI 模型管理工具(搭建和调用MCP)
没刮胡子
Linux服务器技术软件开发技术实战专栏人工智能AI开源人工智能AI助手mcpsse知识库智能体
说明AingDesk是一款开源免费的本地AI模型管理工具,旨在简化AI模型部署流程并提升用户体验。AingDesk支持本地AI模型及API+知识库搭建。支持知识库、模型API、分享、联网搜索、智能体。✨产品亮点跨平台支持客户端支持Windows、macOS,服务端可通过Docker部署高效下载与网络优化自动选择最优下载线路,支持断点续传,提升大模型部署速度兼容OpenAIAPI格式,方便第三方模型
- 深度学习使用Pytorch训练模型步骤
vvvdg
深度学习pytorch人工智能
训练模型是机器学习和深度学习中的核心过程,旨在通过大量数据学习模型参数,以便模型能够对新的、未见过的数据做出准确的预测。训练模型通常包括以下几个步骤:1.数据准备:收集和处理数据,包括清洗、标准化和归一化。将数据分为训练集、验证集和测试集。2.定义模型:选择模型架构,例如决策树、神经网络等。初始化模型参数(权重和偏置)。3.选择损失函数:根据任务类型(如分类、回归)选择合适的损失函数。4.选择优化
- 如何看待机器学习方法在超分子化学领域的日渐流行?
cda2024
机器学习人工智能
大家好,今天咱们来聊聊一个既时髦又接地气的话题:如何看待机器学习方法在超分子化学领域的日渐流行?想象一下,你是一位超分子化学家,正忙于设计一种新型的分子结构,这个结构需要具备特定的功能。传统的方法是通过反复实验和理论计算来优化这个结构,但过程可能非常耗时且复杂。而现在,借助机器学习,你可以更快、更准确地找到最优解。这就是为什么机器学习在超分子化学领域变得越来越受欢迎的原因之一。一、超分子化学是什么
- 电赛DEEPSEEK
马职音人
嵌入式硬件stm32学习单片机HAL库
以下是针对竞赛题目的深度优化方案,重点解决频率接近时的滤波难题和相位测量精度问题:以下是使用NIMultisim14.3实现本项目的详细解决方案:一、基础要求实现方案(模块化设计)1.双频信号发生电路电路结构:[信号源1]XFG1(1kHz)->[电压跟随器U1A]->[加法器U2A][信号源2]XFG2(10kHz)->[电压跟随器U1B]->[加法器U2A]关键参数设置:元件清单:-运算放大器
- Unity纹理的性能优化
东邪丶
游戏开发图形学/渲染unity性能优化游戏引擎纹理贴图
https://developer.unity.cn/projects/6482ba86edbc2a116e4f27c1在Unity的储存方式大部分的纹理,Unity都会保存两份像素数据的副本:GPU内存:对应的数据对象为RenderTexture,是渲染所需的数据CPU内存:对应的数据对象为Texture,属于可选数据,又被成为可读纹理,用于读取/写入/控制像素数据在Unity不同位置的像素数据
- SD-WAN优化云应用与多云架构访问的关键策略
1.SD-WAN如何优化企业对公有云和SaaS应用的访问?1.1智能流量优化SD-WAN通过应用识别技术,可以根据不同的业务应用流量需求,动态分配网络资源。例如,SD-WAN能够优先为钉钉、企业微信、金山文档等关键SaaS应用分配低延迟、高带宽的链路,确保这些应用的高效运行。动态路径选择:SD-WAN可实时监测网络性能(如延迟、抖动、丢包率),并基于网络状态动态选择访问云服务(如阿里云、腾讯云、华
- SD-WAN在智慧工厂中的实践:云平台与边缘计算高效协作解析
北极光SD-WAN组网
边缘计算人工智能
随着工业4.0与智能制造的深入推进,智慧工厂成为现代制造业的重要发展方向。智慧工厂依托云计算与边缘计算协同处理海量数据,以实现生产过程的智能化。然而,云平台和边缘计算之间的数据传输对网络的可靠性、灵活性和实时性提出了更高要求。在此背景下,SD-WAN(软件定义广域网)技术成为解决这一问题的重要工具。本文将探讨SD-WAN技术在制造业中如何优化云平台与边缘计算的协作应用,分析其在智慧工厂场景下的具体
- 算法大厨日记:猫猫狐狐带你用代码做一锅香喷喷的“预测汤”
Gyoku Mint
AI修炼日记猫猫狐狐的小世界人工智能人工智能机器学习python算法database深度学习数据挖掘
️【开场·今天的料理名叫“预测炖汤”】猫猫:“咱今天突发奇想,决定用机器学习代码给你炖一锅‘预测汤’喵!这不是教你代码,是要告诉你怎么把‘算法’吃进肚子里~”狐狐:“别急,她又在打比方了。这锅汤从数据准备到调参优化,就跟你平常做饭的过程没两样,只不过食材都被咱们用代码换了一遍。”【第一步·数据准备,就是挑菜啦】猫猫:“首先是挑菜(数据预处理),不能什么菜都扔进去锅里吧?要洗干净去皮(数据清洗),再
- 《FastAPI & AI编程结合:从入门到精通》指南
AI编程员
001AI传统&编程语言002AI编程工具汇总003AI编程作品汇总笔记学习fastapi开发语言深度学习
以下是一篇系统性的《FastAPI&AI编程结合:从入门到精通》指南,共分30大章节,超过10万字,涵盖FastAPI核心开发、AI集成原理、高性能优化、经典案例和5大完整项目实战。第一章:FastAPI革命性优势1.1现代API框架对比#性能基准测试(Requests/sec)|框架|JSON响应|数据验证|异步支持||---
- Spring Cache+Redis缓存方案详解:从代码到实践
大手你不懂
JavaJava项目实战Redisspring缓存redis
描述:在现代Java开发中,缓存是提升系统性能的核心手段之一。本文通过实际代码案例,深入解析SpringCache与Redis的集成原理,结合项目中的ModuleDatabaseInfoService接口和RedisConfig配置,探讨如何通过声明式缓存实现高效的数据库访问优化。一、核心代码解析1.服务接口设计(拿查询数据源配置信息举例)publicinterfaceModuleDatabase
- Python助力自动驾驶:深度学习模型优化全攻略
Echo_Wish
Python!实战!python自动驾驶深度学习
Python助力自动驾驶:深度学习模型优化全攻略说起自动驾驶,大家第一反应往往是“高精地图”“传感器融合”“路径规划”等等,背后真正的“大脑”其实是各式各样的深度学习模型。它们负责感知环境、识别路况、预测行为,甚至实时做出决策。可是,跑在车上的这些模型不仅要精准,还得轻量、实时、稳定,这可不是简单的“丢GPU就能解决”的问题。今天,咱们就从Python开发者的视角,聊聊自动驾驶里深度学习模型的优化
- 用AI给AR加“智慧”:揭秘增强现实智能互动的优化秘密
Echo_Wish
人工智能前沿技术人工智能ar
用AI给AR加“智慧”:揭秘增强现实智能互动的优化秘密引子:增强现实,到底还能怎么更聪明?还记得当年PokémonGO火爆全球的场景吗?玩家们手机对准街头,虚拟小精灵活灵活现地跳出来,那就是增强现实(AR)最经典的应用之一。随着硬件发展和算法进步,AR正逐步从“炫酷玩具”变成生产力工具、教育助手、零售新体验。但AR想要更“聪明”,不是简单把虚拟物放到现实里那么简单,而是让虚拟世界和现实环境更自然地
- Cesium快速入门到精通系列教程十:实现任意多个蜂巢似六边形组合
duansamve
cesiumcesium
要实现完美的正六边形蜂巢排列,关键在于精确计算每个六边形的顶点位置和排列方式。以下是Cesium1.106中优化后的完整实现方案:正六边形几何原理正六边形的特性:所有边长相等(设为radius)中心到每个顶点的距离相等(外接圆半径)相邻六边形中心间距为√3*radius行间距为1.5*radiusCesium.Ion.defaultAccessToken='你的defaultAccessToken
- AI优化算法实战:使用粒子群优化求解复杂工程问题
AI学长带你学AI
ai
AI优化算法实战:使用粒子群优化求解复杂工程问题关键词:粒子群优化(PSO)、全局优化、工程问题、智能算法、参数调优摘要:本文以“鸟群觅食”为灵感来源,深入浅出地讲解粒子群优化(ParticleSwarmOptimization,PSO)算法的核心原理,并通过机械结构轻量化设计的实战案例,展示其在复杂工程问题中的应用。文章从算法起源到数学模型,从代码实现到工程落地,层层拆解技术细节,帮助读者快速掌
- Cesium快速入门到精通系列教程十一:Cesium1.74中高性能渲染上万Polyline
duansamve
cesiumcesium
在Cesium1.74中,高性能渲染大量线条的核心在于PrimitiveAPI的批量处理、着色器优化和数据合并策略。以下是结合多个技术方案的最佳实践和完整代码实现:一、高性能渲染方案选择PrimitiveAPI批量渲染优势:直接操作几何体实例,减少Entity的开销,支持合并几何数据降低DrawCall。关键类:PolylineGeometry+GeometryInstance+Primitive
- 深度剖析AI人工智能在自动驾驶中的系统优化
AI云原生与云计算技术学院
人工智能自动驾驶机器学习ai
深度剖析AI人工智能在自动驾驶中的系统优化关键词:AI人工智能、自动驾驶、系统优化、传感器融合、决策算法摘要:本文深入探讨了AI人工智能在自动驾驶系统中的优化问题。从自动驾驶的背景入手,详细解释了相关核心概念,如传感器、决策算法等。阐述了这些核心概念之间的关系,介绍了核心算法原理和具体操作步骤,还通过数学模型和公式进行了理论支持。给出了项目实战案例,分析了实际应用场景,推荐了相关工具和资源,最后探
- GitHub每周最火火火项目(6.23-6.29)
FutureUniant
github日推github人工智能计算机视觉音视频ai
1.twentyhq/twenty项目名称:twenty项目介绍:基于TypeScript开发,致力于打造社区驱动的现代Salesforce替代方案,聚焦客户关系管理(CRM)系统构建。旨在为企业提供灵活、可定制且社区共建的CRM平台,覆盖客户数据管理、销售流程追踪、营销活动策划、服务工单处理等核心业务场景,助力企业优化客户交互全流程,提升运营效率。用途贯穿企业客户管理各环节:销售团队借助其自定义
- Trae CN
WangLinXX
AIai
️技术实现深度架构设计采用微内核+插件化架构,核心引擎仅占15MB内存,通过RPC调用云侧AI模型(响应延迟约800ms)。本地缓存最近3次生成代码的AST结构,支持离线基础编辑。模型协同机制豆包1.5Pro负责需求语义解析,DeepSeek-R1生成代码骨架,DeepSeek-V3进行风格优化。三模型并行推理,最终由规则引擎校验API兼容性(如微信SDK版本匹配)。性能实测数据场景响应时间代码通
- MySQL之全场景常用工具链
AA-代码批发V哥
MySQLmysql数据库运维
MySQL之全场景常用工具链一、基础连接与客户端工具1.1mysql命令行客户端1.2MySQLWorkbench:官方可视化1.3NavicatPremium二、管理与开发工具2.1phpMyAdmin:Web端管理首选2.2HeidiSQL:轻量Windows客户端三、性能优化工具3.1EXPLAIN:查询优化3.2SHOWPROFILE:细粒度性能分析3.3慢查询日志:捕获性能痛点四、备份与
- openai-go v1.6.0版本详解:新增功能与优化全面解析
福大大架构师每日一题
文心一言vschatgptgolangeasyui开发语言
一、前言openai-go作为OpenAI官方提供的Go语言客户端库,一直备受广大Go语言开发者关注和喜爱。随着人工智能技术的飞速发展,openai-go的迭代速度也在不断加快。最近,openai-go发布了v1.6.0版本,该版本带来了多项新功能和优化,进一步提升了API的灵活性和开发者体验。本文将基于官方发布的完整更新日志,深入解析v1.6.0版本的新增功能、改进细节及实际应用,帮助读者全面掌
- InnoDB的页分裂、页合并及优化策略
flydroid
mysql数据库
文章目录B+树结构1.非叶子节点(索引节点)2.叶子节点(数据节点)3.层级关系4.B+树vsB树的核心区别5.B+树查询流程示例1.页分裂(PageSplit)触发条件分裂过程分裂类型性能影响2.页合并(PageMerge)触发条件合并过程性能影响3.页分裂与合并的根因B+树的平衡性要求动态数据操作的必然结果4.页分裂与合并的优化策略减少页分裂减少页合并5.示例分析页分裂场景页合并场景总结Inn
- day043-负载均衡算法与高可用keepalived
孙克旭
老男孩教育Linux运维99期负载均衡算法运维linux
文章目录0.老男孩思想-运维能为公司创造的价值1.负载均衡轮询算法1.1加权轮询1.2ip哈希1.3url哈希2.负载均衡模块指令补充3.高可用4.keepalived4.1部署keepalived服务4.2脑裂故障4.2.1脑裂故障常见原因4.2.2脑裂故障解决方法5.思维导图0.老男孩思想-运维能为公司创造的价值省钱:服务器设备、机房带宽、云主机云服务减少CDN流量优化、架构改造,当流量增加时
- 141G显存H20单机DeepSeek-R1满血FP8版性能测试
#环境参数#H20141G单机8卡,CUDA12.4,vLLMv0.8.3,flashinferv0.2.2#服务化命令#基于知乎大神的推荐出装与前期H800双机生产环境测试,在H20上开启EP、MLA等核心优化参数,实现推理吞吐性能最优吞吐量破10000tokens/s,VLLM0.8.1版本驱动下的Deepseek-r1671Bhttps://zhuanlan.zhihu.com/p/1887
- 说说自己Python 代码优化实践
chilavert318
大数据linux运维python
今年上半年在外省做一个大数据相关的项目,在review项目组成员的代码时,发现一段处理大数据集的模块存在明显性能瓶颈:10万条数据的清洗流程耗时近20分钟,CPU占用率却始终在30%以下。深入分析后发现,看似简洁的Python代码背后,隐藏着诸多可以优化的细节——这并非个例,我们的程序在追求代码可读性时,往往忽略了Python特有的性能陷阱。今天抽点时间,从我实践中的代码就python开发,从内存
- DeepSeek在性能测试中的应用:AI驱动的性能优化之旅
程序员小雷
性能优化功能测试测试工具单元测试测试用例postmanselenium
上次我们讨论了DeepSeek在自动化测试中的应用,今天我们继续深入探讨如何使用DeepSeek来进行性能测试。性能测试往往涉及大量数据分析和性能瓶颈诊断,这正是AI的强项。让我们看看如何借助DeepSeek的强大能力,让性能测试变得更智能、更高效。1.性能测试场景生成器首先,我们需要一个智能的性能测试场景生成器:classPerformanceScenarioGenerator:def__ini
- Qt:QCustomPlot库简介
十秒耿直拆包选手
CandC++QtandPysideQCustomPlot学习qtc++QCustomPlot
QCustomPlot是一个基于Qt框架的轻量级C++绘图库,专为高效绘制二维图表(如曲线图、柱状图、金融图表等)而设计。相比QtCharts模块,它以高性能和高度可定制性著称,尤其适合需要实时数据可视化的科学计算、工业监控和金融分析场景。核心特性概览特性说明轻量高效仅需2个头文件+1个源码文件,零外部依赖实时性能优化处理百万级数据点,支持OpenGL加速多图层系统支持无限图层叠加,独立坐标系交互
- Java Web二手物品交易平台课程设计项目
草莓味儿柠檬
本文还有配套的精品资源,点击获取简介:盐鱼二手物品交易网站是一个基于Servlet和JSP的JavaWeb开发课程设计项目,适合Java初学者进行实战演练。项目内容包括Servlet与JSP的基础知识、MVC架构、数据库交互、会话管理、安全与性能优化、部署与运行,以及测试与调试等各个方面。学生通过此项目可以全面理解JavaWeb开发技术,并提升实战能力。1.Servlet生命周期与HTTP请求处理
- 如何设计一个高并发系统?从哪些方面考虑?
真IT布道者
架构性能优化分布式
核心观点:高并发系统设计需要从架构分层、资源扩展、性能优化、容错机制四个维度综合考量,通过分布式架构和异步化等手段实现系统弹性。一、架构分层设计1.分层解耦接入层:使用Nginx/LVS实现负载均衡,采用DNS轮询或Anycast进行流量分发服务层:微服务架构(如SpringCloud或Kubernetes),服务按功能垂直拆分数据层:读写分离(MySQL主从)+分库分表(ShardingSphe
- 算法优化:前缀和+哈希表
雨声敲敲,风声潇潇
算法算法javaleetcode性能优化哈希表
今天在leetcode上写到6952.统计趣味子数组的数目这道题的时候出现了超时问题,由此学习了前缀和+哈希表的方法。目前看到与此知识点相关的题目有如下:560.和为k的子数组,非常经典的前缀和+哈希表,可以从这一道题入手。6952.统计趣味子数组的数目,这道题比上一到稍微难一点,但是不至于困难。下面介绍一下前缀和+哈希表以560题为例,题目:给你一个整数数组nums和一个整数k,请你统计并返回该
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号