Hadoop之MapReduce程序应用一

摘要:MapReduce程序处理专利数据集。

关键词:MapReduce程序   专利数据集

数据源:专利引用数据集cite75_99.txt。(该数据集可以从网址http://www.nber.org/patents/下载)

问题描述:

读取专利引用数据集并对它进行倒排。对于每一个专利,找到那些引用它的专利并进行合并。top5输出结果如下:

1                                3964859, 4647229

10000                            4539112

100000                           5031388

1000006                          4714284

1000007                          4766693

解决方案:

1  开发工具:  VM10+Ubuntu12.04+hadoop1.1.2+eclipse

2  在eclipse中创建一个工程,并且在工程里添加一个java类。

程序清单如下:

package com.wangluqing;

import java.io.IOException; 
import java.util.Iterator; 
import org.apache.hadoop.conf.Configuration; 
import org.apache.hadoop.conf.Configured; 
import org.apache.hadoop.fs.Path; 
import org.apache.hadoop.io.Text; 
import org.apache.hadoop.mapred.FileInputFormat; 
import org.apache.hadoop.mapred.FileOutputFormat; 
import org.apache.hadoop.mapred.JobClient; 
import org.apache.hadoop.mapred.JobConf; 
import org.apache.hadoop.mapred.KeyValueTextInputFormat; 
import org.apache.hadoop.mapred.MapReduceBase; 
import org.apache.hadoop.mapred.Mapper; 
import org.apache.hadoop.mapred.OutputCollector; 
import org.apache.hadoop.mapred.Reducer; 
import org.apache.hadoop.mapred.Reporter; 
import org.apache.hadoop.mapred.TextOutputFormat; 
import org.apache.hadoop.util.Tool; 
import org.apache.hadoop.util.ToolRunner;

public class MyJob1 extends Configured implements Tool {
public static class MapClass extends MapReduceBase implements Mapper<Text,Text,Text,Text> {

@Override
public void map(Text key, Text value, OutputCollector<Text, Text> output,
Reporter reporter) throws IOException {
// TODO Auto-generated method stub

output.collect(value, key);
}

}

public static class Reduce extends MapReduceBase implements Reducer<Text,Text,Text,Text> {

@Override
public void reduce(Text key, Iterator<Text> values,
OutputCollector<Text, Text> output, Reporter reporter)
throws IOException {
// TODO Auto-generated method stub
String csv = "";
while(values.hasNext()) {
if(csv.length()>0) 
csv += ",";
csv += values.next().toString();
}

output.collect(key, new Text(csv));

}
}

public static void main(String[] args) throws Exception {
// TODO Auto-generated method stub
String[] arg={"hdfs://hadoop:9000/user/root/input/cite75_99.txt","hdfs://hadoop:9000/user/root/output"};
int res = ToolRunner.run(new Configuration(),new MyJob1(), arg);
System.exit(res);
}

public int run(String[] args) throws Exception {
// TODO Auto-generated method stub
Configuration conf = getConf(); 
JobConf job = new JobConf(conf, MyJob1.class); 
Path in = new Path(args[0]); 
Path out = new Path(args[1]); 
FileInputFormat.setInputPaths(job, in); 
FileOutputFormat.setOutputPath(job, out);

job.setJobName("MyJob"); 
job.setMapperClass(MapClass.class); 
job.setReducerClass(Reduce.class); 
job.setInputFormat(KeyValueTextInputFormat.class); 
job.setOutputFormat(TextOutputFormat.class); 
job.setOutputKeyClass(Text.class); 
job.setOutputValueClass(Text.class); 
job.set("key.value.separator.in.input.line", ","); 
JobClient.runJob(job); 
return 0;

}

}

运行Run on hadoop,在Ubuntu 下执行命令

hadoop fs -cat  /usr/root/output/part-00000  |  head

可以查看到经过MapReduce程序处理后的结果。

总结:

第一:可以采用装有Hadoop版本对应插件的Eclipse集成开发工具进行MapReduce程序开发。

第二:根据数据流和问题域设计和编写MapReduce程序。

Resource:

http://www.wangluqing.com/2014/03/hadoop-mapreduce-programapp1/ 

2 参考《Hadoop实战》第四章 MapReduce基础程序

 

你可能感兴趣的:(mapreduce,hadoop,应用)