算法系列笔记8(有关图的算法二—最短路径问题)

       图的最短路径问题主要分为两类,单源最短路径问题和全对最短路径问题。单源最短路径问题指给点单个源点,求其到所有其它顶点之间的最短距离。而全对最短路径问题指所有顶点之间的最短路劲问题。此外对于单对最短路径问题,从渐进意义上来看,目前还没有比最好的单元算法更快的算法来解决这一问题。

一:单源最短路径问题

单源最短路劲问题根据其权重分为四类,当图G=(V,E)为无权图,直接使用广度优先遍历(这里不做介绍);当权值为非负值,则使用Dijkstra算法;存在负权值及负权环,可以使用Bellman-Ford算法。最后一类是有向无回图(DAG)的单源最短路径问题。

Dijkstra算法

Dijkstra算法为贪心算法,如何证明贪心策略确实有效才是关键。

基本思想:给每个顶点一个估算距离,初始化源点的估算距离为0,其它点为无穷大;优先队列Q=V,从Q中选择最小的估算距离的顶点加入集合S中,然后对从该顶点出发的每条边进行松弛,从而更新每个顶点的估算距离。

需要证明的就是从Q中选择最小估算距离的顶点加入S中,此时的估算距离就等于该顶点的最短路径。

代码如下:

// dijkstra 算法

string Graph::intToStr(int i){
	string s;
	stringstream ss;
	ss << i;
	ss >>s;
	ss.clear();
	return s;
}
void Graph::dijkstra(){
	mPriceQueue.clear();
	mPriceQueue[0] = 0;
	path[0] = intToStr(0);
	for(int i = 1; i < vertexNum; i++){
		mPriceQueue[i] = MAXPRICE; 
		path[i] = ""; 
	}
	while(!mPriceQueue.empty()){
		pair<int, int> pMinNode = getMinPriceVet();      // dijkstra的贪心策略就是该点就是此时的pMinNode.second就是最短路径
		int minPriceVet = pMinNode.first;
		minDistance[minPriceVet] = pMinNode.second;   //  保存最短路径到minDistance中
		GNode *p = edges[minPriceVet].next;
		while(p != NULL){
			if(mPriceQueue.count(p->val) && (p->weight + pMinNode.second) < mPriceQueue[p->val]){  // 松弛操作
				mPriceQueue[p->val] = p->weight + pMinNode.second;
				path[p->val] = path[minPriceVet] + intToStr(p->val);
			}
			p = p->next;
		}
	}
	// 输出路径
	for(int i = 0; i < vertexNum; i++){
		cout << "从0到" << i << "的最短路径为: " <<path[i] << "; 距离为: " << minDistance[i] << endl;
	}
}
结果:

算法系列笔记8(有关图的算法二—最短路径问题)_第1张图片

时间复杂度分析:时间复杂度为V*Textract min + E*Trelax的时间。当Q为数组时,时间复杂的为O(V^2);当Q为二叉堆时,时间复杂度为O(Vlg(V+E));当Q为fibonacci堆时,时间复杂度为O(VlgV+E).

 

Bellman-Ford算法

Bellman-Ford的思想是将边按照一定的顺序,每条边都松弛V-1次。每条边都松弛V-1次,一定能使估算距离等于最短路径。

代码如下:

// BellmanFord 算法 
// 按照边的顺序松弛每一条边 V-1次
void Graph::bellmanFord(){
	minDistance[0] = 0;
	path[0] = intToStr(0);
	for(int i = 1; i < vertexNum; i++){
		minDistance[i] = MAXPRICE;
		path[i] = "";
	}
	for(int m = 0; m < vertexNum-1; m++){
		for(int i = 0; i < vertexNum; i++){
			GNode *p = edges[i].next;
			while(p != NULL){
				if(minDistance[p->val] > p->weight + minDistance[i]){     // 松弛每一条边
					minDistance[p->val] = minDistance[i] + p->weight;
					path[p->val] = path[i] + intToStr(p->val);
				}
				p = p->next;
			}
		}
	}
	for(int i = 0; i < vertexNum; i++){            // 检查是否存在负权回路
		GNode *p = edges[i].next;
		while(p != NULL){
			if(minDistance[p->val] > p->weight + minDistance[i]){
				cout << "该图存在负权环" << endl;
				return;
			}
			p = p->next;
		}
	}
	// 输出路径
	for(int i = 0; i < vertexNum; i++){
		cout << "从0到" << i << "的最短路径为: " <<path[i] << "; 距离为: " << minDistance[i] << endl;
	}
}

结果如下:

算法系列笔记8(有关图的算法二—最短路径问题)_第2张图片

时间复杂度为O(VE).

注意:这里有个应用就是差分约束系统。其实线性规划的一种特殊情况,即A矩阵每行只有一个1和-1,其它的都为0,这样可以构造约束图,求得最短路径就是差分约束系统的解。这里不详细介绍了。

 

DAG图的单源最短路径

算法的基本思想:求DAG图的拓扑排序,然后按照拓扑排序顶点的顺序对其每条边进行松弛操作即如果d[v] > d[u]+w[u,v],则d[v] = d[u]+w[u,v]。其时间复杂度为O(V+E).

 

二:全对最短路径问题

       求所有的两两顶点之间的最短路径,最基本的思想就是对所有的顶点都运用单源最短路径问题。这样当无权值时,时间复杂度为O(V^2+VE)<即V*BFS>;权值非负为O(V^2lgV+VE)<即V*Dijkstra>;一般情况为O(V^2*E),此时对于稠密图E=O(V^2),要达到O(V^4)了,效率会非常差,因此需要其他算法来改进时间复杂度。主要有三种方法,第一种为动态规划方法(结合矩阵乘法);第二种为Floyd-Warshall算法;第三种为Johnson算法,对于稀疏图要优于Floy-Warshall算法。

动态规划方法

  

其中dijm表示从i到j的最短路径,其中最多经过m条边。此时当m=V-1即为我们要求的最短路径(对于无负权环)。D(1)=W为权重矩阵。即求D(V-1).

此外将(1)式看做某种新运算*,那么每次都是求D(m) = D(m-1) * W。

代码如下:

//  用动态规划求全最短路径
void Graph::dpAllDistance(){
	int Adj[maxSize][maxSize];
	for(int i = 0; i < vertexNum; i++){
		for(int j = 0; j < vertexNum; j++){
			minAllDistance[i][j] = MAXPRICE; 
			if(i == j) minAllDistance[i][j] = 0;         
			AllPath[i][j] = intToStr(i);
			Adj[i][j] = minAllDistance[i][j];
		}
	}
	for(int i = 0; i < vertexNum; i++){
		GNode *p = edges[i].next;
		while(p != NULL){
			minAllDistance[i][p->val] = p->weight;     //  经过了1条边 即为权重
			Adj[i][p->val] = p->weight;
			AllPath[i][p->val] = AllPath[i][p->val] + intToStr(p->val);
			p = p->next;
		}
	}

	for(int m = 2; m < vertexNum; m++){     // 至多经过m条边
		for(int i = 0; i < vertexNum; i++){
			for(int j = 0; j < vertexNum; j++){
				for(int k = 0; k < vertexNum; k++){
					if(minAllDistance[i][j] > minAllDistance[i][k] + Adj[k][j]){
						minAllDistance[i][j] = minAllDistance[i][k] + Adj[k][j];
						AllPath[i][j] = AllPath[i][k] + intToStr(j);
					}
				}
			}
		}
	}
	// 检测是否存在负权环
	for(int i = 0; i < vertexNum; i++){
		if(minAllDistance[i][i] < 0){
			cout << "该图存在负权环" << endl;
			return;
		}
	}

	// 将全对最短路径输出
	for(int i = 0; i < vertexNum; i++){
		for(int j = 0; j < vertexNum; j++){
			cout << "从" <<i << "到" << j <<"的最短路径为: " << AllPath[i][j] << " 距离为: " << minAllDistance[i][j] << endl;
		} 
	}
}

时间复杂度:此时时间复杂度仍然为O(V^4),但是采用D(m) = D(m/2)*D(m/2)来计算,时间复杂度即为O(V^3*lgV).

   

Floyd-Warshall算法

定义dijk表示从i到j考虑了从中间节点{1,2,3…k}经过的所有情况的最小值。当k=n时,即考虑了所有顶点,此时即为最短路径。

代码如下:

// floyd-warshall算法求最短路径问题

void Graph::floydWarshall(){
	int Adj[maxSize][maxSize];
	for(int i = 0; i < vertexNum; i++){
		for(int j = 0; j < vertexNum; j++){
			minAllDistance[i][j] = MAXPRICE; 
			if(i == j) minAllDistance[i][j] = 0;         
			AllPath[i][j] = intToStr(i);
			Adj[i][j] = minAllDistance[i][j];
		}
	}
	for(int i = 0; i < vertexNum; i++){
		GNode *p = edges[i].next;
		while(p != NULL){
			minAllDistance[i][p->val] = p->weight;     //  经过了1条边 即为权重
			Adj[i][p->val] = p->weight;
			AllPath[i][p->val] = AllPath[i][p->val] + intToStr(p->val);
			p = p->next;
		}
	}
	for(int k = 0; k < vertexNum; k++){
		for(int i = 0; i < vertexNum; i++){
			for(int j = 0; j < vertexNum; j++){
				if(minAllDistance[i][j] > minAllDistance[i][k] + minAllDistance[k][j]){
					minAllDistance[i][j] = minAllDistance[i][k] + minAllDistance[k][j];
					AllPath[i][j] = AllPath[i][k] + AllPath[k][j];
				}
			}
		}
	}

	// 检测是否存在负权环
	for(int i = 0; i < vertexNum; i++){
		if(minAllDistance[i][i] < 0){
			cout << "该图存在负权环" << endl;
			return;
		}
	}

	// 将全对最短路径输出
	for(int i = 0; i < vertexNum; i++){
		for(int j = 0; j < vertexNum; j++){
			cout << "从" <<i << "到" << j <<"的最短路径为: " << AllPath[i][j] << " 距离为: " << minAllDistance[i][j] << endl;
		} 
	}

结果如下:

算法系列笔记8(有关图的算法二—最短路径问题)_第3张图片

时间复杂度为O(V^3).

 

Johnson算法

Johnson算法采用了重赋权重方法。重赋权重方法不会改变最短路径,此外通过重赋权重产生的都是非负权重。

伪代码:

算法系列笔记8(有关图的算法二—最短路径问题)_第4张图片

时间复杂度为O(V)*Dijkstra算法。

算法全部代码:

graph.h

#ifndef GRAPH_H
#define GRAPH_H
#include <iostream>
#include <vector>
#include <map>
#include <utility>
#include <string>
using namespace std;
#define maxSize 10
#define MAXPRICE 0x10000000  // 将此值设为权值的最大值


struct GNode{
	int val;
	int weight;
	GNode *next;
};
class Graph{
public:
	void createGraph(int n, int e);
	void destroyGraph(GNode *p);
	~Graph(){
		for(int i = 0; i < vertexNum; i++){
			destroyGraph(edges[i].next);
			//cout << "析构:" << i << endl;
		}
	}
	void showGraph();
	void bfsTravel();      // 广度遍历
	void dfsTravel();      // 深度遍历
	void showTopSort();   //  输出拓扑序列
	void componentSC();      // 建立图g的强连通分量

	void prim();
	void dijkstra();
	void bellmanFord();

	// 动态规划求全最短路径
	void dpAllDistance();

	void floydWarshall();


private:
	int vertex[maxSize];      // 存放顶点
	GNode edges[maxSize];    //  存放邻接表
	int vertexNum;        //顶点个数
	int edgesNum;          //边条数

	//bfs and dfs 遍历
	int visited[maxSize];
	void bfs(int s);
	void dfs(int s);
	int beginTime[maxSize];       // 深度开始访问x的时间
	int endTime[maxSize];          // 结束访问x的时间
	static int time;
	vector<int> topSort;      // topSort的逆序为有向无回路的拓扑排序  
	void buildTransGraph(Graph &g);   // 建立图g的转置

	// prim
	map<int, int> mPriceQueue;    // 保存最小生成树和dijkstra算法的造价
	pair<int, int> getMinPriceVet();
	int preNode[maxSize];      // 用于保存最小生成树的边 值为该结点的前驱

	// 保存dijkstra 路径
	string path[maxSize];        // 保存最终的最短路径
	int minDistance[maxSize];   // 保存最终的最小距离
	string intToStr(int i);

	// 保存所有路劲 
	int minAllDistance[maxSize][maxSize];
	string AllPath[maxSize][maxSize];	
};

#endif
graph.cpp

#include <iostream>
#include "graph.h"
#include <queue>
#include <algorithm>
#include <sstream>
using namespace std;


int Graph::time = 0;
void Graph::createGraph(int n, int e){
	vertexNum = n;
	edgesNum = e;
	for(int i = 0; i < n; i++){
		vertex[i] = i;
		edges[i].val = i;
		edges[i].weight = 0;
		edges[i].next = NULL;
	}

	for(int i = 0; i < e; i++){
		int source, dest, wei;
		cin >> source >> dest >> wei;
		GNode *newNode = new GNode();
		newNode->val = dest;
		newNode->weight = wei;
		newNode ->next = NULL;
		GNode *p = &edges[source];
		while(p->next != NULL) p = p->next;
		p->next = newNode;

		//  无向图     有向图就将这段删除掉
		/*GNode *newNode2 = new GNode();
		newNode2->val = source;
		newNode2->weight = wei;
		newNode2 ->next = NULL;
		GNode *p2 = &edges[dest];
		while(p2->next != NULL) p2 = p2->next;
		p2->next = newNode2;*/


	}
}

void Graph::destroyGraph(GNode *p){
	if(p == NULL) return;
	else{
		destroyGraph(p->next);
		delete p;
	}
}

void Graph::showGraph(){
	for(int i = 0; i < vertexNum; i++){
		int j = i;
		cout << i << "->";
		GNode *p = edges[j].next;
		while( p != NULL) {
			cout << "(" << p->val <<"," << p->weight << ")" ;
			p = p->next;
		}
		cout << endl;
	}
}

// 广度遍历图
void Graph::bfs(int s){
	queue<int> q;
	q.push(s);
	visited[s] = 1;
	while(!q.empty()){
		int u = q.front();
		q.pop();
		cout << u <<" ";
		GNode *p = edges[u].next;
		while(p != NULL){
			if(!visited[p->val]){    // 未被访问,则将其加入队列中并标志为访问过
				q.push(p->val);
				visited[p->val] = 1;
			}
			p = p->next;
		}
	}

}

void Graph::bfsTravel(){
	memset(visited, 0, sizeof(int)*vertexNum);
	for(int i = 0; i < vertexNum; i++){
		if(!visited[i]){
			bfs(i);
			cout << endl;
		}
	}
}

// 深度优先遍历
void Graph::dfs(int s){
	visited[s] = 1;
	time += 1;
	beginTime[s] = time;
	cout << s << "(" << beginTime[s] << " ";              // shen
	GNode *p = edges[s].next;
	while(p != NULL){
		if(!visited[p->val])
			dfs(p->val);
		p = p->next;
	}
	time += 1;
	endTime[s] = time;
	topSort.push_back(s);
	cout << endTime[s] << ")" <<" ";
}

void Graph::dfsTravel(){
	memset(visited, 0, sizeof(int)*vertexNum);
	memset(beginTime, 0, sizeof(int)*vertexNum);  // 结点开始访问的时间
	memset(endTime, 0, sizeof(int)*vertexNum);    // 结点结束访问的时间
	for(int i = 0; i < vertexNum; i++){
		if(!visited[i]){
			dfs(i);
			cout << endl;
		}
	}
}

//  输出拓扑排序
void Graph::showTopSort(){
	for(vector<int>::reverse_iterator iter = topSort.rbegin(); iter != topSort.rend(); iter ++)
		cout << *iter << " ";
	cout << endl;
}

// 创建图g的转置
void Graph::buildTransGraph(Graph &g){
	this->vertexNum = g.vertexNum;
	this->edgesNum = g.edgesNum;
	for(int i = 0; i < vertexNum; i++){
		this->vertex[i] = g.vertex[i];
		this->edges[i].val = g.edges[i].val;
		this->edges[i].weight = g.edges[i].weight;
		this->edges[i].next = NULL;
	}

	for(int i = 0; i < vertexNum; i++){
		GNode *p = g.edges[i].next;
		while(p != NULL){
			GNode *newNode = new GNode();
			newNode->val = i;
			newNode->next = NULL;
			newNode->weight = p->weight;
			GNode *q = &edges[p->val];
			while(q->next != NULL) q = q->next;
			q->next = newNode;
			p = p->next;
		} 
	}
}

//强连通分量
void Graph::componentSC(){
	//time = 0;
	//dfsTravel();              // 对图g进行深度搜索得到完成x访问所需要的时间 并由此得到其拓扑排序
	Graph g2;
	g2.buildTransGraph(*this);        // 得到图G的转置
	time = 0;
	memset(g2.visited, 0, sizeof(int)*vertexNum);
	cout << "强连通分量: " << endl;
	for(vector<int>::reverse_iterator iter = topSort.rbegin(); iter != topSort.rend(); iter++){  // 对转置图g2进行深度搜索得到强连通分量
		if(!g2.visited[*iter])
			g2.dfs(*iter);
	}
	cout << endl;
}

// 最小生成树
/*最小生成树采用的是贪心算法:设T是图G的MST(minimum spanning tree), 
A属于V, (u,v)是连接A与V-A之间的一条边且权值最小,则(u,v)边属于最小生成树
lowcost存放代价*/

pair<int, int> Graph::getMinPriceVet(){
	pair<int, int> p;
	int minPrice = MAXPRICE;
	int minPriceVet = 0;
	for(map<int, int>::iterator iter = mPriceQueue.begin(); iter != mPriceQueue.end(); iter++){
		if((*iter).second < minPrice){
			minPrice = (*iter).second;
			minPriceVet = (*iter).first;
			p = *iter;
		}
	}
	mPriceQueue.erase(minPriceVet);         // 或者采用数组 此时就需要设置visited标记数组来判断该顶点是否已经加入S中了
	return p;
}

void Graph::prim(){
	mPriceQueue.clear();
	mPriceQueue[0] = 0;
	for(int i = 1; i < vertexNum; i++){
		mPriceQueue[i] = MAXPRICE; 
	}
	while(!mPriceQueue.empty()){
		pair<int, int> pMinNode = getMinPriceVet();
		int minPriceVet = pMinNode.first;
		GNode *p = edges[minPriceVet].next;
		while(p != NULL){
			if(mPriceQueue.count(p->val) && p->weight < mPriceQueue[p->val]){
				mPriceQueue[p->val] = p->weight;
				preNode[p->val] = minPriceVet;
			}
			p = p->next;
		}
	}
	// 展示最小生成树的边
	for(int i = 1; i < vertexNum; i++)
	{
		cout << "(" << preNode[i] << "," << i << ") ";
	}
	cout << endl;
}




// dijkstra 算法

string Graph::intToStr(int i){
	string s;
	stringstream ss;
	ss << i;
	ss >>s;
	ss.clear();
	return s;
}
void Graph::dijkstra(){
	mPriceQueue.clear();
	mPriceQueue[0] = 0;
	path[0] = intToStr(0);
	for(int i = 1; i < vertexNum; i++){
		mPriceQueue[i] = MAXPRICE; 
		path[i] = ""; 
	}
	while(!mPriceQueue.empty()){
		pair<int, int> pMinNode = getMinPriceVet();      // dijkstra的贪心策略就是该点就是此时的pMinNode.second就是最短路径
		int minPriceVet = pMinNode.first;
		minDistance[minPriceVet] = pMinNode.second;   //  保存最短路径到minDistance中
		GNode *p = edges[minPriceVet].next;
		while(p != NULL){
			if(mPriceQueue.count(p->val) && (p->weight + pMinNode.second) < mPriceQueue[p->val]){  // 松弛操作
				mPriceQueue[p->val] = p->weight + pMinNode.second;
				path[p->val] = path[minPriceVet] + intToStr(p->val);
			}
			p = p->next;
		}
	}
	// 输出路径
	for(int i = 0; i < vertexNum; i++){
		cout << "从0到" << i << "的最短路径为: " <<path[i] << "; 距离为: " << minDistance[i] << endl;
	}
}


// BellmanFord 算法 
// 按照边的顺序松弛每一条边 V-1次
void Graph::bellmanFord(){
	minDistance[0] = 0;
	path[0] = intToStr(0);
	for(int i = 1; i < vertexNum; i++){
		minDistance[i] = MAXPRICE;
		path[i] = "";
	}
	for(int m = 0; m < vertexNum-1; m++){
		for(int i = 0; i < vertexNum; i++){
			GNode *p = edges[i].next;
			while(p != NULL){
				if(minDistance[p->val] > p->weight + minDistance[i]){     // 松弛每一条边
					minDistance[p->val] = minDistance[i] + p->weight;
					path[p->val] = path[i] + intToStr(p->val);
				}
				p = p->next;
			}
		}
	}
	for(int i = 0; i < vertexNum; i++){            // 检查是否存在负权回路
		GNode *p = edges[i].next;
		while(p != NULL){
			if(minDistance[p->val] > p->weight + minDistance[i]){
				cout << "该图存在负权环" << endl;
				return;
			}
			p = p->next;
		}
	}
	// 输出路径
	for(int i = 0; i < vertexNum; i++){
		cout << "从0到" << i << "的最短路径为: " <<path[i] << "; 距离为: " << minDistance[i] << endl;
	}
}

//  用动态规划求全最短路径
void Graph::dpAllDistance(){
	int Adj[maxSize][maxSize];
	for(int i = 0; i < vertexNum; i++){
		for(int j = 0; j < vertexNum; j++){
			minAllDistance[i][j] = MAXPRICE; 
			if(i == j) minAllDistance[i][j] = 0;         
			AllPath[i][j] = intToStr(i);
			Adj[i][j] = minAllDistance[i][j];
		}
	}
	for(int i = 0; i < vertexNum; i++){
		GNode *p = edges[i].next;
		while(p != NULL){
			minAllDistance[i][p->val] = p->weight;     //  经过了1条边 即为权重
			Adj[i][p->val] = p->weight;
			AllPath[i][p->val] = AllPath[i][p->val] + intToStr(p->val);
			p = p->next;
		}
	}

	for(int m = 2; m < vertexNum; m++){     // 至多经过m条边
		for(int i = 0; i < vertexNum; i++){
			for(int j = 0; j < vertexNum; j++){
				for(int k = 0; k < vertexNum; k++){
					if(minAllDistance[i][j] > minAllDistance[i][k] + Adj[k][j]){
						minAllDistance[i][j] = minAllDistance[i][k] + Adj[k][j];
						AllPath[i][j] = AllPath[i][k] + intToStr(j);
					}
				}
			}
		}
	}
	// 检测是否存在负权环
	for(int i = 0; i < vertexNum; i++){
		if(minAllDistance[i][i] < 0){
			cout << "该图存在负权环" << endl;
			return;
		}
	}

	// 将全对最短路径输出
	for(int i = 0; i < vertexNum; i++){
		for(int j = 0; j < vertexNum; j++){
			cout << "从" <<i << "到" << j <<"的最短路径为: " << AllPath[i][j] << " 距离为: " << minAllDistance[i][j] << endl;
		} 
	}
}

// floyd-warshall算法求最短路径问题

void Graph::floydWarshall(){
	int Adj[maxSize][maxSize];
	for(int i = 0; i < vertexNum; i++){
		for(int j = 0; j < vertexNum; j++){
			minAllDistance[i][j] = MAXPRICE; 
			if(i == j) minAllDistance[i][j] = 0;         
			AllPath[i][j] = intToStr(i);
			Adj[i][j] = minAllDistance[i][j];
		}
	}
	for(int i = 0; i < vertexNum; i++){
		GNode *p = edges[i].next;
		while(p != NULL){
			minAllDistance[i][p->val] = p->weight;     //  经过了1条边 即为权重
			Adj[i][p->val] = p->weight;
			AllPath[i][p->val] = AllPath[i][p->val] + intToStr(p->val);
			p = p->next;
		}
	}
	for(int k = 0; k < vertexNum; k++){
		for(int i = 0; i < vertexNum; i++){
			for(int j = 0; j < vertexNum; j++){
				if(minAllDistance[i][j] > minAllDistance[i][k] + minAllDistance[k][j]){
					minAllDistance[i][j] = minAllDistance[i][k] + minAllDistance[k][j];
					AllPath[i][j] = AllPath[i][k] + AllPath[k][j];
				}
			}
		}
	}

	// 检测是否存在负权环
	for(int i = 0; i < vertexNum; i++){
		if(minAllDistance[i][i] < 0){
			cout << "该图存在负权环" << endl;
			return;
		}
	}

	// 将全对最短路径输出
	for(int i = 0; i < vertexNum; i++){
		for(int j = 0; j < vertexNum; j++){
			cout << "从" <<i << "到" << j <<"的最短路径为: " << AllPath[i][j] << " 距离为: " << minAllDistance[i][j] << endl;
		} 
	}

}

你可能感兴趣的:(最短路径,图)