《数据挖掘概念与技术》学习笔记第4章(4/10)数据挖掘原语、语言和系统结构

 

语法归纳

1说明任务相关的数据

<Data_Mining_Statement>::=

use database <database_name>| use data warehouse <data_warehouse_name>

use hierarchy< hierarchy_name> for<attribute_or_dimension>}

<Mine_Knowledge_sepcification>

in relevance to < attribute_or_dimension _list>

from <relations(s)/cubes(s)>

[where <condition>]

[order by <order_list>]

[group by <group _list>]

[having <condition>]

{with [<interest_measure_name>]} threshold=< threshold _value>

[for <attribugte(s)>]}

use database AllGames_db

in relevance to I.name, I.price, C.income, C.age

from Customer C, item I, purchases P, items_sold S

where I.item_ID=S.item_ID and S.trans_ID=P. .trans_ID and .cust_ID=C. cust_ID and C.country=”Cananda”

group by P.date

 


2特征化

<Mine_Knowledge_Specification>::=

mine characeristics [as <pattern_name>>]

analyze<neasure(s)>

mine characterestics as customerPurchasing

analyze count%

 

3区分

<Mine_Knowledge_Specification>::=

mine comparisom [as <pattern_name>]

for<,target_class> where <target_conditon>

{versus<contrast_class_i> where <contrast_condition_i>}

analyze<neasure(s)>

mine comparison as purchaseGroups

for bigSpenders where avg(I.price)>= $100

versus budgetSpenders where avg(I.price)<$100

analyze count

 

4关联

<Mine_Knowledge_Specification>::=

mine association [as <pattern_name>]

[matching <metapattern>]

mine associations as buyingHabits

matching P(X: customers, W)^Q(X,Y)=>buys(X,Z)

 

5分类

<Mine_Knowledge_Specification>::=

mine classification [as <pattern_name>]

analyze <classifying_attribute_or_dimension>

mine classification as classifyCustomerCreditRating

analyze credit_rating

 

 

你可能感兴趣的:(数据挖掘,database,语言,hierarchy,classification,associations)