对于OpenCV的开发团队来说,持续稳定地提高代码库非常重要。我们一直在思考如何在使其易用的同时保持灵活性。新的C++接口即为此而来。尽管如此,向下兼容仍然十分重要。我们并不想打断你基于早期OpenCV库的开发。因此,我们添加了一些函数来处理这种情况。在以下内容中你将学到:
在用新版本之前,你首先需要学习一些新的图像数据结构: Mat - 基本图像容器 ,它取代了旧的 CvMat 和 IplImage 。转换到新函数非常容易,你仅需记住几条新的原则。
OpenCV 2 接受按需定制。所有函数不再装入一个单一的库中。我们会提供许多模块,每个模块都包含了与其功能相关的数据结构和函数。这样一来,如果你仅仅需要使用OpenCV的一部分功能,你就不需要把整个巨大的OpenCV库都装入你的程序中。使用时,你仅需要包含用到的头文件,比如:
#include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
所有OpenCV用到的东西都被放入名字空间 cv 中以避免与其他库的数据结构和函数名称的命名冲突。因此,在使用OpenCV库中的任何定义和函数时,你必须在名称之前冠以 cv:: ,或者在包含头文件后,加上以下指令:
using namespace cv; // 新的C++接口API都在此名字空间中,需要导入。
因为所有库中函数都已在此名字空间中,所以无需加 cv 作为前缀。据此所有新的C++兼容函数都无此前缀,并且遵循驼峰命名准则。也就是第一个字母为小写(除非是单个单词作为函数名,如 Canny)并且后续单词首字母大写(如 copyMakeBorder ).
接下来,请记住你需要将所有用到的模块链接到你的程序中。如果你在Windows下开发且用到了 动态链接库(DLL) ,你还需要将OpenCV对应动态链接库的路径加入程序执行路径中。关于Windows下开发的更多信息请阅读 How to build applications with OpenCV inside the Microsoft Visual Studio ;对于Linux用户,可参考 Using OpenCV with Eclipse (plugin CDT) 中的实例及说明。
你可以使用 IplImage 或 CvMat 操作符来转换 Mat 对象。在C接口中,你习惯于使用指针,但此处将不再需要。在C++接口中,我们大多数情况下都是用 Mat 对象。此对象可通过简单的赋值操作转换为 IplImage 和 CvMat 。示例如下:
Mat I;
IplImage pI = I;
CvMat mI = I;
现在,如果你想获取指针,转换就变得麻烦一点。编译器将不能自动识别你的意图,所以你需要明确指出你的目的。可以通过调用 IplImage 和 CvMat 操作符来获取他们的指针。我们可以用 & 符号获取其指针如下:
Mat I;
IplImage* pI = &I.operator IplImage();
CvMat* mI = &I.operator CvMat();
来自C接口最大的抱怨是它将所有内存管理工作交给你来做。你需要知道何时可以安全释放不再使用的对象,并且确定在程序结束之前释放它,否则就会造成讨厌的内存泄露。为了绕开这一问题,OpenCV引进了一种智能指针。它将自动释放不再使用的对象。使用时,指针将被声明为 Ptr 模板的特化:
Ptr<IplImage> piI = &I.operator IplImage();
将C接口的数据结构转换为 Mat 时,可将其作为构造函数的参数传入,例如:
Mat K(piL), L;
L = Mat(pI);
现在,你已经学习了最基本的知识。 这里 你将会看到一个混合使用C接口和C++接口的例子。你也可以在可以再OpenCV的代码库中的sample目录中找到此文件samples/cpp/tutorial_code/core/interoperability_with_OpenCV_1/interoperability_with_OpenCV_1.cpp 。为了进一步帮助你认清其中区别,程序支持两种模式:C和C++混合,以及纯C++。如果你宏定义了 DEMO_MIXED_API_USE ,程序将按第一种模式编译。程序的功能是划分颜色平面,对其进行改动并最终将其重新合并。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
#include <stdio.h>
#include <iostream>
#include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
using namespace cv; // The new C++ interface API is inside this namespace. Import it.
using namespace std;
#define DEMO_MIXED_API_USE
int main( int argc, char** argv )
{
const char* imagename = argc > 1 ? argv[1] : "lena.jpg";
#ifdef DEMO_MIXED_API_USE
Ptr<IplImage> IplI = cvLoadImage(imagename); // Ptr<T> is safe ref-counting pointer class
if(IplI.empty())
{
cerr << "Can not load image " << imagename << endl;
return -1;
}
Mat I(IplI); // Convert to the new style container. Only header created. Image not copied.
#else
Mat I = imread(imagename); // the newer cvLoadImage alternative, MATLAB-style function
if( I.empty() ) // same as if( !I.data )
{
cerr << "Can not load image " << imagename << endl;
return -1;
}
#endif
|
在此,你可一看到新的结构再无指针问题,哪怕使用旧的函数,并在最后结束时将结果转换为 Mat 对象。
1 2 3 4 5 6 |
// convert image to YUV color space. The output image will be created automatically.
Mat I_YUV;
cvtColor(I, I_YUV, CV_BGR2YCrCb);
vector<Mat> planes; // Use the STL's vector structure to store multiple Mat objects
split(I_YUV, planes); // split the image into separate color planes (Y U V)
|
因为我们打算搞乱图像的亮度通道,所以首先将图像由默认的RGB颜色空间转为YUV颜色空间,然后将其划分为独立颜色平面(Y,U,V)。第一个例子中,我们对每一个平面用OpenCV中三个主要图像扫描算法(C []操作符,迭代,单独元素访问)中的一个进行处理。在第二个例子中,我们给图像添加一些高斯噪声,然后依据一些准则融合所有通道。
运用扫描算法的代码如下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 |
// Method 1. process Y plane using an iterator
MatIterator_<uchar> it = planes[0].begin<uchar>(), it_end = planes[0].end<uchar>();
for(; it != it_end; ++it)
{
double v = *it * 1.7 + rand()%21 - 10;
*it = saturate_cast<uchar>(v*v/255);
}
for( int y = 0; y < I_YUV.rows; y++ )
{
// Method 2. process the first chroma plane using pre-stored row pointer.
uchar* Uptr = planes[1].ptr<uchar>(y);
for( int x = 0; x < I_YUV.cols; x++ )
{
Uptr[x] = saturate_cast<uchar>((Uptr[x]-128)/2 + 128);
// Method 3. process the second chroma plane using individual element access
uchar& Vxy = planes[2].at<uchar>(y, x);
Vxy = saturate_cast<uchar>((Vxy-128)/2 + 128);
}
}
|
此处可看到,我们可以以三种方式遍历图像的所有像素:迭代器,C指针和单独元素访问方式你可在 OpenCV如何扫描图像、利用查找表和计时 中获得更深入的了解。从旧的函数名转换新版本非常容易,仅需要删除 cv 前缀,并且使用 Mat 数据结构。下面的例子中使用了加权加法:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
Mat noisyI(I.size(), CV_8U); // Create a matrix of the specified size and type
// Fills the matrix with normally distributed random values (around number with deviation off).
// There is also randu() for uniformly distributed random number generation
randn(noisyI, Scalar::all(128), Scalar::all(20));
// blur the noisyI a bit, kernel size is 3x3 and both sigma's are set to 0.5
GaussianBlur(noisyI, noisyI, Size(3, 3), 0.5, 0.5);
const double brightness_gain = 0;
const double contrast_gain = 1.7;
#ifdef DEMO_MIXED_API_USE
// To pass the new matrices to the functions that only work with IplImage or CvMat do:
// step 1) Convert the headers (tip: data will not be copied).
// step 2) call the function (tip: to pass a pointer do not forget unary "&" to form pointers)
IplImage cv_planes_0 = planes[0], cv_noise = noisyI;
cvAddWeighted(&cv_planes_0, contrast_gain, &cv_noise, 1, -128 + brightness_gain, &cv_planes_0);
#else
addWeighted(planes[0], contrast_gain, noisyI, 1, -128 + brightness_gain, planes[0]);
#endif
const double color_scale = 0.5;
// Mat::convertTo() replaces cvConvertScale.
// One must explicitly specify the output matrix type (we keep it intact - planes[1].type())
planes[1].convertTo(planes[1], planes[1].type(), color_scale, 128*(1-color_scale));
// alternative form of cv::convertScale if we know the datatype at compile time ("uchar" here).
// This expression will not create any temporary arrays ( so should be almost as fast as above)
planes[2] = Mat_<uchar>(planes[2]*color_scale + 128*(1-color_scale));
// Mat::mul replaces cvMul(). Again, no temporary arrays are created in case of simple expressions.
planes[0] = planes[0].mul(planes[0], 1./255);
|
正如你所见,变量 planes 也是 Mat 类型的。无论如何,将 Mat 转换为 IplImage 都可通过简单的赋值操作符自动实现。
1 2 3 4 5 6 7 8 9 10 11 12 13 |
merge(planes, I_YUV); // now merge the results back
cvtColor(I_YUV, I, CV_YCrCb2BGR); // and produce the output RGB image
namedWindow("image with grain", CV_WINDOW_AUTOSIZE); // use this to create images
#ifdef DEMO_MIXED_API_USE
// this is to demonstrate that I and IplI really share the data - the result of the above
// processing is stored in I and thus in IplI too.
cvShowImage("image with grain", IplI);
#else
imshow("image with grain", I); // the new MATLAB style function show
|
新的 imshow highgui函数可接受 Mat 和 IplImage 数据结构。 编译并运行例程,如果输入以下第一幅图像,程序将输出以下第二幅或者第三幅图像。