linux内核中的IS_ERR()、PTR_ERR()和ERR_PTR()
在看内核源码的时候,经常会遇到IS_ERR,比如在 linux/arch/arm/kernel/sys_arm.c中
asmlinkage int sys_execve(char __user *filenamei, char __user * __user *argv, char __user * __user *envp, struct pt_regs *regs) { int error; char * filename; filename = getname(filenamei); error = PTR_ERR(filename); if (IS_ERR(filename)) goto out; error = do_execve(filename, argv, envp, regs); putname(filename); out: return error; }IS_ERR宏定义在include/linux/err.h,如下所示:
#ifndef _LINUX_ERR_H #define _LINUX_ERR_H #include <linux/compiler.h> #include <asm/errno.h> /* * Kernel pointers have redundant information, so we can use a * scheme where we can return either an error code or a dentry * pointer with the same return value. * * This should be a per-architecture thing, to allow different * error and pointer decisions. */ #define IS_ERR_VALUE(x) unlikely((x) > (unsigned long)-1000L) static inline void *ERR_PTR(long error) { return (void *) error; } static inline long PTR_ERR(const void *ptr) { return (long) ptr; } static inline long IS_ERR(const void *ptr) { return IS_ERR_VALUE((unsigned long)ptr); } #endif /* _LINUX_ERR_H */下面我们就来具体分析一下这段代码,看看内核中的巧妙设计思路。
要想明白IS_ERR(),首先理解要内核空间。所有的驱动程序都是运行在内核空间,内核空间虽然很大,但总是有限的,而在这有限的空间中,其最后一个page是专门保留的,也就是说一般人不可能用到内核空间最后一个page的指针。换句话说,你在写设备驱动程序的过程中,涉及到的任何一个指针,必然有三种情况:
而所谓的错误指针就是指其已经到达了最后一个page,即内核用最后一页捕捉错误。比如对于32bit的系统来说,内核空间最高地址0xffffffff,那么最后一个page就是指的0xfffff000~0xffffffff(假设4k一个page),这段地址是被保留的。内核空间为什么留出最后一个page?我们知道一个page可能是4k,也可能是更多,比如8k,但至少它也是4k,所以留出一个page出来就可以让我们把内核空间的指针来记录错误了。内核返回的指针一般是指向页面的边界(4k边界),即ptr & 0xfff == 0。如果你发现你的一个指针指向这个范围中的某个地址,那么你的代码肯定出错了。IS_ERR()就是判断指针是否有错,如果指针并不是指向最后一个page,那么没有问题;如果指针指向了最后一个page,那么说明实际上这不是一个有效的指针,这个指针里保存的实际上是一种错误代码。而通常很常用的方法就是先用IS_ERR()来判断是否是错误,然后如果是,那么就调用PTR_ERR()来返回这个错误代码。因此,判断一个指针是不是有效的,可用如下的方式:
#define IS_ERR_VALUE(x) unlikely((x) > (unsigned long)-1000L)
(unsigned long)-1000L 应该为 (unsigned long)-0x1000L!(因为 -0x1000 才是 0xFFFFF000),这应该是内核的一个bug吧!在2.6.30.4的内核中是这样定义的:
#define MAX_ERRNO 4095 #define IS_ERR_VALUE(x) unlikely((x) >= (unsigned long)-MAX_ERRNO)
即判断是不是在(0xfffff000,0xffffffff)之间,因此,可以用IS_ERR()来判断内核函数的返回值是不是一个有效的指针。注意这里用unlikely()的用意!
至于PTR_ERR(), ERR_PTR(),只是强制转换以下而已。现在应该知道为什么我写返回错误码的时候也加个负号如 -ENOSYS这样子了。而PTR_ERR()只是返回错误代码,也就是提供一个信息给调用者,如果你只需要知道是否出错,而不在乎因为什么而出错,那你当然不用调用PTR_ERR()了。
而我们的错误码的值在内存中定义都是这样的(asm-generic/errno-base.h):
...... #define EPERM 1 /* Operation not permitted */ #define ENOENT 2 /* No such file or directory */ #define ESRCH 3 /* No such process */ #define EINTR 4 /* Interrupted system call */ #define EIO 5 /* I/O error */ #define ENXIO 6 /* No such device or address */ #define E2BIG 7 /* Argument list too long */ #define ENOEXEC 8 /* Exec format error */ #define EBADF 9 /* Bad file number */ #define ECHILD 10 /* No child processes */ #define EAGAIN 11 /* Try again */ #define ENOMEM 12 /* Out of memory */ #define EACCES 13 /* Permission denied */ #define EFAULT 14 /* Bad address */ #define ENOTBLK 15 /* Block device required */ #define EBUSY 16 /* Device or resource busy */ #define EEXIST 17 /* File exists */ #define EXDEV 18 /* Cross-device link */ #define ENODEV 19 /* No such device */ #define ENOTDIR 20 /* Not a directory */ #define EISDIR 21 /* Is a directory */ #define EINVAL 22 /* Invalid argument */ #define ENFILE 23 /* File table overflow */ #define EMFILE 24 /* Too many open files */ #define ENOTTY 25 /* Not a typewriter */ #define ETXTBSY 26 /* Text file busy */ #define EFBIG 27 /* File too large */ #define ENOSPC 28 /* No space left on device */ #define ESPIPE 29 /* Illegal seek */ #define EROFS 30 /* Read-only file system */ #define EMLINK 31 /* Too many links */ #define EPIPE 32 /* Broken pipe */ #define EDOM 33 /* Math argument out of domain of func */ #define ERANGE 34 /* Math result not representable */ ........如果指针指向了最后一个page,那么说明实际上这不是一个有效的指针。这个指针里保存的实际上是一种错误代码。而通常很常用的方法就是先用IS_ERR()来判断是否是错误,然后如果是,那么就调用PTR_ERR()来返回这个错误代码。