- 机器学习实战笔记5——线性判别分析
绍少阿
机器学习笔记可视化机器学习python人工智能
任务安排1、机器学习导论8、核方法2、KNN及其实现9、稀疏表示3、K-means聚类10、高斯混合模型4、主成分分析11、嵌入学习5、线性判别分析12、强化学习6、贝叶斯方法13、PageRank7、逻辑回归14、深度学习线性判别分析(LDA)Ⅰ核心思想对于同样一件事,站在不同的角度,我们往往会有不同的看法,而降维思想,亦是如此。同上节课一样,我们还是学习降维的算法,只是提供了一种新的角度,由上
- 颜色识别基于高斯混合模型(GMM)的查找表分类器(LUT)
吃个糖糖
Halcon人工智能机器学习
文章目录create_class_gmm创建高斯混合模型(GMM)以进行分类任务add_samples_image_class_gmm提取训练样本,并将其添加到高斯混合模型(GMM)的训练数据集中train_class_gmm训练一个高斯混合模型(GMM)clear_class_gmm清除模型create_class_lut_gmm基于已训练的高斯混合模型(GMM)创建一个查找表(LUT),用于分
- 高斯混合模型聚类(GMM)matlab实现
唐维康
高斯混合模型聚类
GaussianMixtureModel,就是假设数据服从MixtureGaussianDistribution,换句话说,数据可以看作是从数个GaussianDistribution中生成出来的。实际上,我们在K-means和K-medoids两篇文章中用到的那个例子就是由三个Gaussian分布从随机选取出来的。实际上,从中心极限定理可以看出,Gaussian分布(也叫做正态(Normal)分
- K-means(K均值聚类算法)算法笔记
Longlongaaago
机器学习机器学习kmeans算法
K-means(K均值聚类算法)算法笔记K-means算法,是比较简单的无监督的算法,通过设定好初始的类别k,然后不断循环迭代,将给定的数据自动分为K个类别。事实上,大家都知道K-means是怎么算的,但实际上,它是GMM(高斯混合模型)的一个特例,其而GMM是基于EM算法得来的,所以本文,将对K-means算法的算法思想进行分析。算法流程K-means算法的算法流程非常简单,可以从下图进行讲解(
- 白铁时代 —— (监督学习)原理推导
人生简洁之道
2020年-面试笔记人工智能
来自李航《统计学习方法》文章目录-1指标相似度0概论1优化类1.1朴素贝叶斯1.2k近邻-kNN1.3线性判别分析二分类LDA多分类LDA流程LDA和PCA的区别和联系1.4逻辑回归模型&最大熵模型逻辑回归最大熵模型最优化1.5感知机&SVM感知机SVM线性可分SVM线性不可分SVM对偶优化问题&非线性SVM序列最小优化算法SMO1.7概率图模型EM算法EM算法的导出和流程应用举例:高斯混合模型(
- 大数据期望最大化(EM)算法:从理论到实战全解析
星川皆无恙
机器学习与深度学习大数据人工智能大数据大数据算法深度学习人工智能
文章目录大数据期望最大化(EM)算法:从理论到实战全解析一、引言概率模型与隐变量极大似然估计(MLE)Jensen不等式二、基础数学原理条件概率与联合概率似然函数Kullback-Leibler散度贝叶斯推断三、EM算法的核心思想期望(E)步骤最大化(M)步骤Q函数与辅助函数收敛性四、EM算法与高斯混合模型(GMM)高斯混合模型的定义分量权重E步骤在GMM中的应用M步骤在GMM中的应用五、实战案例
- 人工智能知识
奥利奥利奥利奥
人工智能
11语音处理语音识别系统框架:特征提取(mfcc、傅立叶)->声学模型(高斯混合)->语言模型->解码搜索特征提取:梅尔频率倒谱系数、傅里叶变换声学模型:高斯混合模型-隐马尔可夫模型14多智能体系统自主性、主动性、反应能力、社会能力产生式表示:规则:IFATHEMB(置信度默认100)事实:(Li,Age,40,默认0.1)框架表示法:框架(事物)-槽(各个方面)-侧面-值框架表示法是一种适应性强
- sample 算子_Halcon算子解释 - osc_poeqd6cw的个人空间 - OSCHINA - 中文开源技术交流社区...
weixin_39791322
sample算子
Halcon算子解释大全Halcon/Visionpro视频教程和资料,请访问重码网,网址:http://www.211code.comChapter1:Classification1.1Gaussian-Mixture-Models1.add_sample_class_gmm功能:把一个训练样本添加到一个高斯混合模型的训练数据上。2.classify_class_gmm功能:通过一个高斯混合模型
- HALCON算子函数总结(上)
逆风路途
视觉
HALCON算子函数总结(上)**HALCON算子函数——Chapter1:Classification**Chapter_1_:Classification1.1Gaussian-Mixture-Models1.add_sample_class_gmm功能:把一个训练样本添加到一个高斯混合模型的训练数据上。2.classify_class_gmm功能:通过一个高斯混合模型来计算一个特征矢量的类。
- 【非监督学习 02】高斯混合模型
一碗姜汤
机器学习机器学习人工智能
高斯混合模型(GuassianMixedModel,GMM)也是一种常见的聚类算法,与K均值算法类似,同样使用了EM算法进行迭代计算。高斯混合模型假设每个簇的数据都是符合高斯分布的,当前数据呈现的分布就是各个簇的高斯分布叠加在一起的结果。图5.6是一个数据分布的样例,如果只用一个高斯分布来拟合图中的数据,图中所有的椭圆即为高斯分布的二倍标准差所对应的椭圆。直观来说,图中的数据明显分为两簇,因此只用
- 图像分割-Grabcut法(C#)
VB.Net
C#EmguCV计算机视觉图像处理EmguCVOpenCvGrabcut
版权声明:本文为博主原创文章,转载请在显著位置标明本文出处以及作者网名,未经作者允许不得用于商业目的。本文的VB版本请访问:图像分割-Grabcut法-CSDN博客GrabCut是一种基于图像分割的技术,它可以用于将图像中的前景和背景分离。在实现中,GrabCut算法通常需要使用高斯混合模型(GMM)来建立前景和背景的概率分布,以便更好的估计像素的标签。同时,还需要考虑如何处理边界处的像素,以避免
- 图像分割-Grabcut法
VB.Net
EmguCV计算机视觉图像处理Grabcut
版权声明:本文为博主原创文章,转载请在显著位置标明本文出处以及作者网名,未经作者允许不得用于商业目的。本文的C#版本请访问:图像分割-Grabcut法(C#)-CSDN博客GrabCut是一种基于图像分割的技术,它可以用于将图像中的前景和背景分离。在实现中,GrabCut算法通常需要使用高斯混合模型(GMM)来建立前景和背景的概率分布,以便更好的估计像素的标签。同时,还需要考虑如何处理边界处的像素
- 超详细EM算法举例及推导
老实人小李
聚类算法聚类
最好先学习一下极大似然EM(Expectation-Maximum)算法也称期望最大化算法,曾入选“数据挖掘十大算法”中,可见EM算法在机器学习、数据挖掘中的影响力。EM算法是最常见的隐变量估计方法,在机器学习中有极为广泛的用途,例如常被用来学习高斯混合模型(Gaussianmixturemodel,简称GMM)的参数;隐式马尔科夫算法(HMM)、LDA主题模型的变分推断等等。EM算法是一种迭代优
- EM算法及公式推导
XI-C-Li
概率图模型算法机器学习人工智能
含隐变量的概率图模型的参数估计问题在解决含隐变量的概率图模型的参数估计问题时,一种简单的想法是取使其对数边际似然最大的作为估计的参数。为观测变量的观测数据,是一个向量,为隐变量的取值(但实际上无法观测)是一个向量,需要通过求和(积分)的形式去除。但函数中存在对数函数内部带有求和的形式,这样非常难以求导。比如在高斯混合模型中,隐变量是一维离散的变量。12......k......其中均是待估计参数,
- 【数据不完整?用EM算法填补缺失】期望值最大化 EM 算法:睹始知终
Debroon
算法
期望值最大化算法EM:睹始知终算法思想算法推导算法流程E步骤:期望M步骤:最大化陷入局部最优的原因算法应用高斯混合模型(GaussianMixtureModel,GMM)问题描述输入输出Python代码实现算法思想期望值最大化方法,是宇宙演变、物种进化背后的动力。如果一个公司在制定年终奖标准时,把每个员工一半的奖金和公司价值观挂钩,人们就会背诵创始人每个语录—整个公司都会自动迭代寻找最优解,每个人
- 无监督学习(下)
歌者文明
机器学习人工智能算法
1.高斯混合模型(GMM)(1)简单概念高斯混合模型是一种概率模型,它假定实例是由多个参数未知的高斯分布的混合生成的。从单个高斯分布生成的所有实例都形成一个集群,通常看起来像一个椭圆。每个集群都可以由不同的椭圆形状,大小,密度和方向。高斯模型的均值代表集群的中心,方差代表方向这个模型假定一个数据集是从K个高斯分布的集合中产生,但是每个集合都有一个权重,代表产生一个实例到数据集的可能性或者贡献(我暂
- VAE变分自编码器原理推导+Python代码实现
篝火者2312
机器学习人工智能笔记python机器学习开发语言深度学习
1、前言变分自编码器是近些年较火的一个生成模型,我个人认为其本质上仍然是一个概率图模型,只是在此基础上引入了神经网络。本文将就变分自编码器(VAE)进行简单的原理讲解和数学推导。2、引入2.1、高斯混合模型生成模型,可以简单的理解为生成数据(不止,但我们暂且就这么理解它)\boxed{(不止,但我们暂且就这么理解它)}(不止,但我们暂且就这么理解它)。假如现在我们有样本数据,而我们发现这些样本符合
- 模式识别与机器学习-无监督学习-聚类
Kilig*
机器学习机器学习学习聚类
无监督学习-聚类监督学习&无监督学习K-meansK-means聚类的优点:K-means的局限性:解决方案:高斯混合模型(GaussianMixtureModels,GMM)多维高斯分布的概率密度函数:高斯混合模型(GaussianMixtureModel,GMM)模型形式:EM算法迭代过程:K-means与高斯混合模型(GMM)的对比:K-means:高斯混合模型(GMM):高斯混合模型(GM
- 【机器学习】聚类【Ⅴ】密度聚类与层次聚类
不牌不改
【机器学习】聚类机器学习算法
主要来自周志华《机器学习》一书,数学推导主要来自简书博主“形式运算”的原创博客,包含自己的理解。有任何的书写错误、排版错误、概念错误等,希望大家包含指正。由于字数限制,分成五篇博客。【机器学习】聚类【Ⅰ】基础知识与距离度量【机器学习】聚类【Ⅱ】原型聚类经典算法【机器学习】聚类【Ⅲ】高斯混合模型讲解【机器学习】聚类【Ⅳ】高斯混合模型数学推导【机器学习】聚类【Ⅴ】密度聚类与层次聚类5密度聚类密度聚类亦
- 一网打尽目前常用的聚类方法,详细介绍了每一种聚类方法的基本概念、优点、缺点!!
小桥流水---人工智能
人工智能机器学习算法聚类数据挖掘机器学习
目前常用的聚类方法1.K-均值聚类(K-MeansClustering)2.层次聚类(HierarchicalClustering)3.DBSCAN聚类(DBSCANClustering)4.谱聚类(SpectralClustering)5.高斯混合模型(GaussianMixtureModel,GMM)6.DBA聚类(DBAClustering)总结1.K-均值聚类(K-MeansCluster
- 高斯分布、高斯混合模型、EM算法详细介绍及其原理详解
IronmanJay
机器学习算法机器学习人工智能高斯分布EM算法
相关文章K近邻算法和KD树详细介绍及其原理详解朴素贝叶斯算法和拉普拉斯平滑详细介绍及其原理详解决策树算法和CART决策树算法详细介绍及其原理详解线性回归算法和逻辑斯谛回归算法详细介绍及其原理详解硬间隔支持向量机算法、软间隔支持向量机算法、非线性支持向量机算法详细介绍及其原理详解高斯分布、高斯混合模型、EM算法详细介绍及其原理详解文章目录相关文章前言一、高斯分布二、高斯混合模型三、EM算法3.1E步
- 机器学习---使用 EM 算法来进行高斯混合模型的聚类
三月七꧁ ꧂
机器学习机器学习算法聚类
1.指定k个高斯分布參数导包importmathimportcopyimportnumpyasnpimportmatplotlib.pyplotaspltisdebug=False全局变量isdebug可以用来控制是否打印调试信息。当isdebug为True时,代码中的一些调试信息将被打印出来,方便进行调试。初始化:defini_data(Sigma,Mu1,Mu2,k,N):globalXglo
- Grabcut算法在图片分割中的应用
视图猿人
QTOpenCV图像视频处理算法计算机视觉人工智能
GrabCut算法原理Grabcut是基于图割(graphcut)实现的图像分割算法,它需要用户输入一个boundingbox作为分割目标位置,实现对目标与背景的分离/分割,与KMeans与MeanShift等图像分割方法不同。Grabcut分割速度快,效果好,支持交互操作,因此在很多APP图像分割/背景虚化的软件中可以看到其身影。主要需要如下知识:k均值聚类、高斯混合模型建模(GMM)、maxf
- (三十七)论文阅读 | 目标检测之PAA
zhangts20
论文阅读深度学习人工智能
简介图1:论文原文论文聚焦的是在目标检测中的Anchor{\rmAnchor}Anchor分配问题,我们知道,Anchor{\rmAnchor}Anchor的分配策略是一个非常重要的环节,这往往决定了后续的边界框回归等操作,进而影响模型最终的性能。论文基于高斯混合模型,提出将Anchor{\rmAnchor}Anchor的得分视为一种概率。同时,Anchor{\rmAnchor}Anchor质量的
- 【文章学习系列之模型】DAGMM
清流自诩
深度学习零散记录学习深度学习论文阅读
本章内容文章概况模型结构损失函数实验结果实验分析总结文章概况《DeepAutoencodingGaussianMixtureModelforUnsupervisedAnomalyDetection》是2018年发表于ICLR的一篇论文,该论文提出一种端到端的无监督异常检测方法DAGMM,取得了不错的效果。文章链接代码链接模型结构深度自编码高斯混合模型(DAGMM)主要由压缩网络和评估网络两大部分组
- 15. 机器学习——聚类
qq_32468785
机器学习面试题汇总与解析机器学习聚类人工智能
机器学习面试题汇总与解析——聚类本章讲解知识点什么是聚类K-means聚类算法均值偏移聚类算法DBSCAN聚类算法高斯混合模型(GMM)的期望最大化(EM)聚类层次聚类算法本专栏适合于Python已经入门的学生或人士,有一定的编程基础。本专栏适合于算法工程师、机器学习、图像处理求职的学生或人士。本专栏针对面试题答案进行了优化,尽量做到好记、言简意赅。这才是一份面试题总结的正确打开方式。这样才方便背
- 多变量高斯分布、高斯混合模型和EM算法
immcrr
多变量高斯分布先总结一些基本结论。设有随机变量组成的向量X=[X1,⋯,Xn]TX=[X1,⋯,Xn]T,均值为μ∈Rnμ∈Rn,协方差矩阵ΣΣ为对称正定nn阶矩阵。在此基础上,如果还满足概率密度函数p(x;μ,Σ)=1(2π)n2|Σ|12exp(−12(x−μ)TΣ−1(x−μ))p(x;μ,Σ)=1(2π)n2|Σ|12exp(−12(x−μ)TΣ−1(x−μ))则称其满足多变量高斯分布,
- 深度学习理论知识入门【EM算法、VAE算法、GAN算法】和【RBM算法、MCMC算法、HMC算法】
_刘文凯_
深度学习基础深度学习算法生成对抗网络
目录深度学习理论知识入门首先,让我们了解第一个流程:现在,让我们看看第二个流程:EM算法GMM(高斯混合模型)深度学习理论知识入门首先,让我们了解第一个流程:EM(Expectation-Maximization):EM算法是一种迭代优化算法,用于在存在潜在变量的统计模型中进行参数估计。它通过交替的E步骤(Expectation,期望)和M步骤(Maximization,最大化)来最大化似然函数。
- Python机器学习实战(一)
数据攻城小狮子
Python数据分析挖掘与可视化python机器学习人工智能
文章目录基于逻辑回归实现乳腺癌预测基于k-近邻算法实现鸢尾花分类基于决策树实现葡萄酒分类基于朴素贝叶斯实现垃圾短信分类基于支持向量机实现葡萄酒分类基于高斯混合模型实现鸢尾花分类基于主成分分析实现鸢尾花数据降维基于奇异值分解实现图片压缩基于逻辑回归实现乳腺癌预测#基于逻辑回归实现乳腺癌预测fromsklearn.datasetsimportload_breast_cancerfromsklearn.
- 第十五章 EM期望极大算法及其推广
小酒馆燃着灯
机器学习手写AI人工智能机器学习
文章目录导读符号说明混合模型伯努利混合模型(三硬币模型)问题描述三硬币模型的EM算法1.初值2.E步3.M步初值影响p,q含义EM算法另外视角Q函数BMM的EM算法目标函数LEM算法导出高斯混合模型GMM的EM算法1.明确隐变量,初值2.E步,确定Q函数3.M步4.停止条件如何应用GMM在聚类中的应用KmeansK怎么定导读概率模型有时既含有观测变量,又含有隐变量或潜在变量。这句很重要,有时候我们
- 怎么样才能成为专业的程序员?
cocos2d-x小菜
编程PHP
如何要想成为一名专业的程序员?仅仅会写代码是不够的。从团队合作去解决问题到版本控制,你还得具备其他关键技能的工具包。当我们询问相关的专业开发人员,那些必备的关键技能都是什么的时候,下面是我们了解到的情况。
关于如何学习代码,各种声音很多,然后很多人就被误导为成为专业开发人员懂得一门编程语言就够了?!呵呵,就像其他工作一样,光会一个技能那是远远不够的。如果你想要成为
- java web开发 高并发处理
BreakingBad
javaWeb并发开发处理高
java处理高并发高负载类网站中数据库的设计方法(java教程,java处理大量数据,java高负载数据) 一:高并发高负载类网站关注点之数据库 没错,首先是数据库,这是大多数应用所面临的首个SPOF。尤其是Web2.0的应用,数据库的响应是首先要解决的。 一般来说MySQL是最常用的,可能最初是一个mysql主机,当数据增加到100万以上,那么,MySQL的效能急剧下降。常用的优化措施是M-S(
- mysql批量更新
ekian
mysql
mysql更新优化:
一版的更新的话都是采用update set的方式,但是如果需要批量更新的话,只能for循环的执行更新。或者采用executeBatch的方式,执行更新。无论哪种方式,性能都不见得多好。
三千多条的更新,需要3分多钟。
查询了批量更新的优化,有说replace into的方式,即:
replace into tableName(id,status) values
- 微软BI(3)
18289753290
微软BI SSIS
1)
Q:该列违反了完整性约束错误;已获得 OLE DB 记录。源:“Microsoft SQL Server Native Client 11.0” Hresult: 0x80004005 说明:“不能将值 NULL 插入列 'FZCHID',表 'JRB_EnterpriseCredit.dbo.QYFZCH';列不允许有 Null 值。INSERT 失败。”。
A:一般这类问题的存在是
- Java中的List
g21121
java
List是一个有序的 collection(也称为序列)。此接口的用户可以对列表中每个元素的插入位置进行精确地控制。用户可以根据元素的整数索引(在列表中的位置)访问元素,并搜索列表中的元素。
与 set 不同,列表通常允许重复
- 读书笔记
永夜-极光
读书笔记
1. K是一家加工厂,需要采购原材料,有A,B,C,D 4家供应商,其中A给出的价格最低,性价比最高,那么假如你是这家企业的采购经理,你会如何决策?
传统决策: A:100%订单 B,C,D:0%
&nbs
- centos 安装 Codeblocks
随便小屋
codeblocks
1.安装gcc,需要c和c++两部分,默认安装下,CentOS不安装编译器的,在终端输入以下命令即可yum install gccyum install gcc-c++
2.安装gtk2-devel,因为默认已经安装了正式产品需要的支持库,但是没有安装开发所需要的文档.yum install gtk2*
3. 安装wxGTK
yum search w
- 23种设计模式的形象比喻
aijuans
设计模式
1、ABSTRACT FACTORY—追MM少不了请吃饭了,麦当劳的鸡翅和肯德基的鸡翅都是MM爱吃的东西,虽然口味有所不同,但不管你带MM去麦当劳或肯德基,只管向服务员说“来四个鸡翅”就行了。麦当劳和肯德基就是生产鸡翅的Factory 工厂模式:客户类和工厂类分开。消费者任何时候需要某种产品,只需向工厂请求即可。消费者无须修改就可以接纳新产品。缺点是当产品修改时,工厂类也要做相应的修改。如:
- 开发管理 CheckLists
aoyouzi
开发管理 CheckLists
开发管理 CheckLists(23) -使项目组度过完整的生命周期
开发管理 CheckLists(22) -组织项目资源
开发管理 CheckLists(21) -控制项目的范围开发管理 CheckLists(20) -项目利益相关者责任开发管理 CheckLists(19) -选择合适的团队成员开发管理 CheckLists(18) -敏捷开发 Scrum Master 工作开发管理 C
- js实现切换
百合不是茶
JavaScript栏目切换
js主要功能之一就是实现页面的特效,窗体的切换可以减少页面的大小,被门户网站大量应用思路:
1,先将要显示的设置为display:bisible 否则设为none
2,设置栏目的id ,js获取栏目的id,如果id为Null就设置为显示
3,判断js获取的id名字;再设置是否显示
代码实现:
html代码:
<di
- 周鸿祎在360新员工入职培训上的讲话
bijian1013
感悟项目管理人生职场
这篇文章也是最近偶尔看到的,考虑到原博客发布者可能将其删除等原因,也更方便个人查找,特将原文拷贝再发布的。“学东西是为自己的,不要整天以混的姿态来跟公司博弈,就算是混,我觉得你要是能在混的时间里,收获一些别的有利于人生发展的东西,也是不错的,看你怎么把握了”,看了之后,对这句话记忆犹新。 &
- 前端Web开发的页面效果
Bill_chen
htmlWebMicrosoft
1.IE6下png图片的透明显示:
<img src="图片地址" border="0" style="Filter.Alpha(Opacity)=数值(100),style=数值(3)"/>
或在<head></head>间加一段JS代码让透明png图片正常显示。
2.<li>标
- 【JVM五】老年代垃圾回收:并发标记清理GC(CMS GC)
bit1129
垃圾回收
CMS概述
并发标记清理垃圾回收(Concurrent Mark and Sweep GC)算法的主要目标是在GC过程中,减少暂停用户线程的次数以及在不得不暂停用户线程的请夸功能,尽可能短的暂停用户线程的时间。这对于交互式应用,比如web应用来说,是非常重要的。
CMS垃圾回收针对新生代和老年代采用不同的策略。相比同吞吐量垃圾回收,它要复杂的多。吞吐量垃圾回收在执
- Struts2技术总结
白糖_
struts2
必备jar文件
早在struts2.0.*的时候,struts2的必备jar包需要如下几个:
commons-logging-*.jar Apache旗下commons项目的log日志包
freemarker-*.jar  
- Jquery easyui layout应用注意事项
bozch
jquery浏览器easyuilayout
在jquery easyui中提供了easyui-layout布局,他的布局比较局限,类似java中GUI的border布局。下面对其使用注意事项作简要介绍:
如果在现有的工程中前台界面均应用了jquery easyui,那么在布局的时候最好应用jquery eaysui的layout布局,否则在表单页面(编辑、查看、添加等等)在不同的浏览器会出
- java-拷贝特殊链表:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
bylijinnan
java
public class CopySpecialLinkedList {
/**
* 题目:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
拷贝pNext指针非常容易,所以题目的难点是如何拷贝pRand指针。
假设原来链表为A1 -> A2 ->... -> An,新拷贝
- color
Chen.H
JavaScripthtmlcss
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <HTML> <HEAD>&nbs
- [信息与战争]移动通讯与网络
comsci
网络
两个坚持:手机的电池必须可以取下来
光纤不能够入户,只能够到楼宇
建议大家找这本书看看:<&
- oracle flashback query(闪回查询)
daizj
oracleflashback queryflashback table
在Oracle 10g中,Flash back家族分为以下成员:
Flashback Database
Flashback Drop
Flashback Table
Flashback Query(分Flashback Query,Flashback Version Query,Flashback Transaction Query)
下面介绍一下Flashback Drop 和Flas
- zeus持久层DAO单元测试
deng520159
单元测试
zeus代码测试正紧张进行中,但由于工作比较忙,但速度比较慢.现在已经完成读写分离单元测试了,现在把几种情况单元测试的例子发出来,希望有人能进出意见,让它走下去.
本文是zeus的dao单元测试:
1.单元测试直接上代码
package com.dengliang.zeus.webdemo.test;
import org.junit.Test;
import o
- C语言学习三printf函数和scanf函数学习
dcj3sjt126com
cprintfscanflanguage
printf函数
/*
2013年3月10日20:42:32
地点:北京潘家园
功能:
目的:
测试%x %X %#x %#X的用法
*/
# include <stdio.h>
int main(void)
{
printf("哈哈!\n"); // \n表示换行
int i = 10;
printf
- 那你为什么小时候不好好读书?
dcj3sjt126com
life
dady, 我今天捡到了十块钱, 不过我还给那个人了
good girl! 那个人有没有和你讲thank you啊
没有啦....他拉我的耳朵我才把钱还给他的, 他哪里会和我讲thank you
爸爸, 如果地上有一张5块一张10块你拿哪一张呢....
当然是拿十块的咯...
爸爸你很笨的, 你不会两张都拿
爸爸为什么上个月那个人来跟你讨钱, 你告诉他没
- iptables开放端口
Fanyucai
linuxiptables端口
1,找到配置文件
vi /etc/sysconfig/iptables
2,添加端口开放,增加一行,开放18081端口
-A INPUT -m state --state NEW -m tcp -p tcp --dport 18081 -j ACCEPT
3,保存
ESC
:wq!
4,重启服务
service iptables
- Ehcache(05)——缓存的查询
234390216
排序ehcache统计query
缓存的查询
目录
1. 使Cache可查询
1.1 基于Xml配置
1.2 基于代码的配置
2 指定可搜索的属性
2.1 可查询属性类型
2.2 &
- 通过hashset找到数组中重复的元素
jackyrong
hashset
如何在hashset中快速找到重复的元素呢?方法很多,下面是其中一个办法:
int[] array = {1,1,2,3,4,5,6,7,8,8};
Set<Integer> set = new HashSet<Integer>();
for(int i = 0
- 使用ajax和window.history.pushState无刷新改变页面内容和地址栏URL
lanrikey
history
后退时关闭当前页面
<script type="text/javascript">
jQuery(document).ready(function ($) {
if (window.history && window.history.pushState) {
- 应用程序的通信成本
netkiller.github.com
虚拟机应用服务器陈景峰netkillerneo
应用程序的通信成本
什么是通信
一个程序中两个以上功能相互传递信号或数据叫做通信。
什么是成本
这是是指时间成本与空间成本。 时间就是传递数据所花费的时间。空间是指传递过程耗费容量大小。
都有哪些通信方式
全局变量
线程间通信
共享内存
共享文件
管道
Socket
硬件(串口,USB) 等等
全局变量
全局变量是成本最低通信方法,通过设置
- 一维数组与二维数组的声明与定义
恋洁e生
二维数组一维数组定义声明初始化
/** * */ package test20111005; /** * @author FlyingFire * @date:2011-11-18 上午04:33:36 * @author :代码整理 * @introduce :一维数组与二维数组的初始化 *summary: */ public c
- Spring Mybatis独立事务配置
toknowme
mybatis
在项目中有很多地方会使用到独立事务,下面以获取主键为例
(1)修改配置文件spring-mybatis.xml <!-- 开启事务支持 --> <tx:annotation-driven transaction-manager="transactionManager" /> &n
- 更新Anadroid SDK Tooks之后,Eclipse提示No update were found
xp9802
eclipse
使用Android SDK Manager 更新了Anadroid SDK Tooks 之后,
打开eclipse提示 This Android SDK requires Android Developer Toolkit version 23.0.0 or above, 点击Check for Updates
检测一会后提示 No update were found