- Java线程协作式中断机制
超人汪小建(seaboat)
线程协作式中断机制jvm
跟着作者的65节课彻底搞懂Java并发原理专栏,一步步彻底搞懂Java并发原理。作者简介:笔名seaboat,擅长工程算法、人工智能算法、自然语言处理、计算机视觉、架构、分布式、高并发、大数据和搜索引擎等方面的技术,大多数编程语言都会使用,但更擅长Java、Python和C++。平时喜欢看书写作、运动、画画。崇尚技术自由,崇尚思想自由。出版书籍:《Tomcat内核设计剖析》、《图解数据结构与算法》
- 【GPT入门】第16课 RAG入门
*星星之火*
大模型gpt
【GPT入门】第16课RAG入门1.RAG概念核心原理主要应用优势挑战RGA工作图解2.RAG系统基本搭建流程1.RAG概念RAG通常指检索增强生成(Retrieval-AugmentedGeneration),是一种将检索技术与生成式人工智能相结合的技术架构,以下是关于它的详细介绍:核心原理检索:RAG会在大量的文本数据中进行检索,这些数据可以是网页、文档、知识库等。它通过各种检索算法和技术,快
- 计算机考研408数据结构大题高频考点与真题解析
竹木有心
数据结构
一、线性表(顺序表与链表)1.1顺序表操作与算法设计高频考点:插入/删除操作的边界处理:检查下标越界与存储空间溢出子数组操作:合并、拆分、逆置等多数组综合问题:如寻找三元组最小距离真题示例:2020年408真题题目:给定三个升序数组S1、S2、S3,求所有可能的三元组(a,b,c)的最小距离D=|a−b|+|b−c|+|c−a|。解法:算法思想:三指针法遍历数组,每次移动当前最小元素的指针核心代码
- 探地雷达F-K偏移算法详解与Python实现
T2ccc
探地雷达算法python
探地雷达F-K偏移算法详解与Python实现文章目录探地雷达F-K偏移算法详解与Python实现前言一、探地雷达成像原理与偏移的必要性二、F-K偏移的基本原理2.1波的传播与频率-波数域2.2F-K偏移的基本思路三、F-K偏移算法的数学推导3.1二维傅里叶变换3.2波场外推3.3Stolt映射(核心步骤)3.4逆变换四、F-K偏移的Python代码实现4.1辅助函数和数据准备4.2F-K偏移核心函
- Akamai 与 AWS 风控分析与绕过技术探讨
qq_33253945
aws云计算爬虫网络爬虫算法安全
1.引言本文将深入探讨Akamai风控和AWS签名算法的技术细节。请注意,文中内容仅供技术研究和学习交流使用。2.Akamai风控核心要素Akamai的主要风控机制包含以下几个关键点:Canvas指纹识别每个浏览器环境都有其独特的Canvas指纹这是风控系统的核心识别方式之一用户行为分析鼠标移动轨迹检测操作行为模式识别相关参数的实时计算与验证JA3指纹TLS握手特征识别客户端环境特征分析代码执行流
- 算法训练:2.移除元素(快慢指针)
貝森不想秃
小白算法训练算法
算法原题:27.移除元素-力扣(LeetCode)移除数组元素移除一个元素时,需要将该元素之后的所有元素依次向前移动一个位置,以填补被移除元素的空位,对于静态数组来说,数组的长度是不会发生变化的,多余的数组元素不进行处理:例如{1,2,3,4}移除3,数组会得到{1,2,4,4}解题思路暴力移除通过for循环嵌套,访问到目标元素就将其后面的所有元素向前移动一格,循环往复快慢指针(本节主要内容)快慢
- 芒格的双轨分析:结合定性和定量的投资方法
SuperAGI2025
DeepSeekai
芒格的"双轨分析":结合定性和定量的投资方法关键词:芒格、双轨分析、定性分析、定量分析、投资方法、系统分析摘要:芒格的“双轨分析”是一种结合定性和定量分析的投资方法,旨在通过综合分析企业的内在价值和市场趋势,帮助投资者做出更科学的投资决策。本文将详细介绍双轨分析的背景、核心概念、算法原理、系统架构及实际应用,帮助读者全面理解并掌握这一方法。第一部分:芒格的双轨分析基础第1章:投资分析的演变与双轨分
- 基于AI智能算法的无人机城市综合治理
GeoSaaS
智慧城市人工智能无人机科技大数据智慧城市gis
随着人工智能技术的飞速发展,无人机技术与AI的结合正在成为城市治理的新趋势。无人机不仅能够提供城市上空的高清视角,而且通过搭载的智能算法,可以实现自动化的监控、分析和响应,极大地提升了城市管理的效率和智能化水平。无人机技术在城市治理中的应用无人机技术在城市治理中的应用主要集中在以下几个方面:违法建筑监测:无人机可以快速覆盖大范围区域,自动识别并记录违建情况,提高执法效率。环卫垃圾识别:通过AI算法
- 自然语言处理:文本聚类
老赵爱学习
python文本聚类k均值聚类算法高斯混合模型的最大期望值算法无监督朴素贝叶斯模型自然语言处理人工智能
介绍大家好,博主又来和大家分享自然语言处理领域的知识了。今天给大家分享的内容是自然语言处理中的文本聚类。文本聚类在自然语言处理领域占据着重要地位,它能将大量无序的文本按照内容的相似性自动划分成不同的类别,极大地提高了文本处理和信息提取的效率。就好比在一个大型图书馆中,文本聚类能够像智能管理员一样,把各种书籍按照主题分类摆放,方便读者快速找到所需资料。而实现文本聚类的方法有很多,其中k均值聚类算法、
- 【工厂老板必看】智能切割算法帮您省 30% 原材料!附真实案例——一维下料问题算法、cad c#二次开发
山水CAD筑梦人
CADC#二次开发算法
一、行业痛点:原材料浪费有多严重?现象:传统人工排料导致大量边角料,例如:某钢材厂每月因切割不合理损失15万元木材加工厂平均浪费率高达25%核心问题:无法兼顾切割数量与材料利用率人工计算耗时且容易出错二、解决方案:贪心算法和遗传算法切割优化系统技术原理(通俗解释):用贪心算法和遗传算法通过编程,自动生成最优切割方案,比人工排料效率高100倍以上!核心优势:省材料:原材料总根数减少20%-40%降成
- 贪心算法——c#
山水CAD筑梦人
C#学习笔记贪心算法算法
贪心算法通俗解释贪心算法是一种"每一步都选择当前最优解"的算法策略。它不关心全局是否最优,而是通过局部最优的累积来逼近最终解。优点是简单高效,缺点是可能无法得到全局最优解。一句话秒懂自动售货机找零钱:用最少数量的硬币凑出指定金额。比如找零198美分,它会优先用25美分的大硬币,不够再用小的,直到凑够金额。背景故事想象你在加拿大超市当收银员(CAD场景):顾客买了东西你需要快速找出零钱198分收银台
- 智能车辆控制技术:MPC与轨迹规划实战项目
柚木i
本文还有配套的精品资源,点击获取简介:本压缩包集合了车辆转向控制与轨迹规划的MATLAB代码,包含模型预测控制(MPC)策略、MPT工具箱应用、车辆动力学模型构建、轨迹规划实现、mp-QP算法应用及MATLAB编程实践。旨在通过源码分析,提供智能车辆控制技术的深入学习与研究平台,涉及横向和纵向运动控制、系统模型的定义、控制策略的制定及仿真流程。1.模型预测控制(MPC)基础与应用模型预测控制(MP
- Manus详解,看这一篇就够了
程序员鑫港
langchain数据库人工智能AI大模型Agent智能体
Monica公司发布了AIAgent智能体产品——Manus,是一款具备突破性技术的通用型AI代理,根据Manus官网(https://manus.im)技术白皮书和网络公开资料,整理Manus核心技术和应用信息如下,欢迎讨论。技术架构多智能体协作系统Manus采用规划代理、执行代理和验证代理的分工机制,模拟人类工作流程,提升复杂任务的处理效率。规划代理采用蒙特卡洛树搜索(MCTS)算法优化任务拆
- 多目标优化算法之NSGA-II、NSGA-III(附Matlab免费代码)
优化算法侠Swarm-Opti
智能优化算法算法matlab开发语言优化算法NSGA
引言NSGA-II和NSGA-III都是非支配排序遗传算法的变种,用于解决多目标优化问题,但它们在多个方面存在差异。相同点基本框架相似:两者都基于遗传算法的框架,包括初始化种群、非支配排序、选择、交叉和变异等操作非支配排序:都采用非支配排序技术,将种群中的个体划分为不同的前沿,识别非支配解集不同点适用目标数量不同:NSGA-II:适用于相对较少的目标数量,通常在2到4个目标之间,在处理较少目标的问
- 基于YOLOv5的车牌识别系统:从数据集到UI界面的实现
深度学习&目标检测实战项目
YOLOv5实战项目YOLOui分类数据挖掘目标跟踪
1.引言随着智能交通系统的发展,车牌识别技术已成为交通管理、停车场自动化、路面监控等应用中的关键技术之一。车牌识别系统(LicensePlateRecognition,LPR)主要用于识别车辆的车牌号码,并将其转化为可以进一步处理的数据。车牌识别系统通常由图像处理、字符识别、目标检测等多种技术组成。近年来,随着深度学习技术的飞速发展,基于卷积神经网络(CNN)的目标检测算法,如YOLO(YouOn
- Python实现数据结构与算法——反转字符串
Mantana
数据结构与算法字符串算法数据结构递归法
题目描述:编写一个函数,其作用是将输入的字符串反转过来。输入字符串以字符数组char[]的形式给出。不要给另外的数组分配额外的空间,你必须原地修改输入数组、使用O(1)的额外空间解决这一问题。你可以假设数组中的所有字符都是ASCII码表中的可打印字符。示例1:输入:["h","e","l","l","o"]输出:["o","l","l","e","h"]示例2:输入:["H","a"
- 深度掌握 ReactJS 高级概念:前端开发者必备
前端javascript
ReactHook深入浅出CSS技巧与案例详解vue2与vue3技巧合集VueUse源码解读这篇文章汇总了ReactJS中值得深入研究的高级概念。读完后,不仅在前端面试中能更胸有成竹,还能自行开发一个类似ReactJS的UI库。目录Rendering的含义与过程Re-rendering发生的机制及原因VirtualDOM的原理Reconciliation算法的运行方式ReactJS的性能优化方案1
- 我的AI工具箱Tauri版-建筑平面图生成装修设计
Mr数据杨
Tauri工具箱ComfyUI
本模块利用先进的AI绘画大模型,将房屋平面设计图转化为高质量的室内装修效果图,让装修设计更加直观、高效。用户只需提供房屋的平面布局,并选择合适的AI绘画模型,系统即可智能生成涵盖客厅、卧室、厨房、卫生间等最多12个房间的高品质设计样图,完整呈现房屋的整体装修效果。本工具支持多种设计风格,如现代简约、北欧风、中式传统、美式复古、日式禅意等,满足不同用户的个性化装修需求。借助AI算法的自动化生成能力,
- 数据结构与算法——哈希表,数组加强哈希表,双链表加强哈希表
Book_熬夜!
数据结构与算法散列表哈希算法数据结构javascript算法
文章目录哈希表1.数组实现hash表2.双链表实现hash表哈希表key是唯一的,value可以重复哈希表和我们常说的Map(键值映射)不是同一个东西。【Map】是一个Java接口,仅声明了若干个方法,并没有给出方法的具体实现;HashMap这种数据结构根据自身特点实现了这些操作。可以说hashmap的get、put、remove等方法复杂度为O(1),但是map接口的复杂度不一定,需要看他底层数
- 动态边界冒泡排序优化
Cybernetic Sage
算法排序算法
下午在复习排序算法时,突发奇想自己按照鸡尾酒排序算法思路写一遍,然后动态边界冒泡排序(DynamicBoundaryBoubbleSort)就这么诞生了。它的思路与鸡尾酒排序不同的是:每次扫描后根据最后一次交换的位置动态调整边界减少无效比较,在数组部分有序的情况下,效率应该比鸡尾酒排序更高。代码如下:#includeusingnamespacestd;constintN=1005;inta[N];
- 简说JVM
祁小白2024
jvmjava后端
目录前言正文JVM内存区域划分JVM执行方式JVM的类加载机制类加载器类加载器的类型自定义类加载器垃圾回收垃圾回收的问题垃圾回收的范围垃圾回收机制垃圾回收算法释放垃圾内存空间前言在Java的技术体系中,有两个至关重要的组件,分别是JVM(Java虚拟机)和Javac(Java编译器),它们在Java程序的生命周期中扮演着截然不同但又紧密关联的角色。Javac编译器的职责是将开发者编写的.java源
- 机器学习算法在司法预测中的应用【附保姆级代码】
一键难忘
机器学习算法人工智能
本文收录于专栏:精通AI实战千例专栏合集https://blog.csdn.net/weixin_52908342/category_11863492.html从基础到实践,深入学习。无论你是初学者还是经验丰富的老手,对于本专栏案例和项目实践都有参考学习意义。每一个案例都附带关键代码,详细讲解供大家学习,希望可以帮到大家。正在不断更新中~机器学习算法在司法预测中的应用司法预测作为法律领域的前沿研究
- 【算法学习之路】9.单调栈
零零时
算法学习之路算法学习c++开发语言单调栈数据结构
栈和队列前言一.简介二.操作(以底到顶递增为例)三.元素大小判断(以底到顶递增为例)四.单调栈的应用12前言我会将一些常用的算法以及对应的题单给写完,形成一套完整的算法体系,以及大量的各个难度的题目,目前算法也写了几篇,题单正在更新,其他的也会陆陆续续的更新,希望大家点赞收藏我会尽快更新的!!!一.简介单调栈的元素是严格单调递增和递减也就是说从栈底到栈顶元素的值逐渐增大或减小,多用于求解元素的左右
- 蓝桥杯省赛真题C++B组2024-握手问题
.ccl
蓝桥杯c++算法
一、题目【问题描述】小蓝组织了一场算法交流会议,总共有50人参加了本次会议。在会议上,大家进行了握手交流。按照惯例他们每个人都要与除自己以外的其他所有人进行一次握手(且仅有一次)。但有7个人,这7人彼此之间没有进行握手(但这7人与除这7人以外的所有人进行了握手)。请问这些人之间一共进行了多少次握手?注意A和B握手的同时也意味着B和A握手了,所以算作是一次握手。二、思路方法一:对于这种题,我一般是来
- PyTorch深度学习框架60天进阶学习计划 - 第18天:模型压缩技术
凡人的AI工具箱
深度学习pytorch学习python人工智能
PyTorch深度学习框架60天进阶学习计划-第18天:模型压缩技术目录模型压缩技术概述知识蒸馏详解软标签生成策略KL散度损失推导温度参数调节结构化剪枝技术通道剪枝评估准则L1-norm剪枝算法APoZ剪枝算法量化训练基础量化类型与精度PyTorch量化API剪枝与量化协同优化Torch.fx动态计算图修改自动化模型压缩流程实现实战案例:ResNet模型压缩性能评估与分析进阶挑战与思考1.模型压缩
- 代码随想录算法训练营day2| 209.长度最小的子数组|59.螺旋矩阵II|区间和|开发商购买土地
70ng
算法矩阵线性代数leetcodejava
209.长度最小的子数组找出该数组中满足其总和大于等于target的长度最小的子数组[numsl,numsl+1,...,numsr-1,numsr],并返回其长度**。**如果不存在符合条件的子数组,返回0。classSolution{publicintminSubArrayLen(inttarget,int[]nums){intfast=0;//快指针intslow=0;//慢指针intsum
- 数据结构与算法(java版)
future-2002
算法数据结构
一、初识数据结构与算法1.1数据结构与算法数据结构是指在计算机中组织和存储数据的方式。它关注数据的逻辑关系、操作和存储方式,以及如何有效地访问和修改数据。常见的数据结构包括数组、链表、栈、队列、树、图等。算法是解决问题的一系列步骤或规则。它描述了如何通过输入数据来产生所需的输出结果。算法可以用来执行各种计算任务,如排序、搜索、图形处理等。好的算法应该具有正确性、可读性、高效性和健壮性。数据结构和算
- 深度学习c++资源库:vector容器,蓝桥杯常用算法sort,unique(排序+去重)
AI少女小鹿
c++算法开发语言
vector容器1.基本概念是STL中的一个容器类,不同于普通数组的静态空间,vector可以动态扩展。动态扩展:并不是在原空间连接新空间,而是找到更大的内存空间,将原数据拷贝到新空间,释放原空间。是一个序列容器,它允许用户在容器的末尾快速地添加或删除元素。与数组相比,提供了更多的功能,如自动调整大小、随机访问等。2.声明与初始化需要指定元素类型,可通过多种方式进行初始化:#include#inc
- 传统笔触与算法洪流:AI时代的艺术创作挑战
人工智能aigc
一、传统与AI的抉择当油画刀与代码编辑器在工作室共存,关于创作方式的争论早已超越工具选择的表层。纽约视觉艺术学院的研究表明,78%的职业艺术家同时使用传统媒介与数字工具,这种混合工作流的创作效率比单一模式高出53%。真正的命题并非"二选一",而在于如何让两种创作维度形成共生关系。传统创作的本质是物质性实践——画笔与画布的摩擦、水墨在宣纸上的晕染轨迹,这些物理交互产生的不可控性,构成了艺术的呼吸感。
- 三天斩获10万用户。零基础用ChatGPT+Flutter开发AI算命小程序,流量变现全流程
众口烁金
chatgptflutter人工智能小程序plotly
---##三天斩获10万用户!零基础用ChatGPT+Flutter开发AI算命小程序,流量变现全流程大揭秘!(附完整源码)**导语**:大学生靠“AI面相分析”小程序日入5万?2023最野路子曝光!无需算法基础,手把手教你用ChatGPT生成风水命理模型,Flutter快速开发上线,抓住玄学经济红利!(文末送开光版源码+裂变增长脚本)**关键词**:AI算命、ChatGPT变现、Flutter开
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,
[email protected] 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
 
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc  
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f