SparkContext是应用启动时创建的Spark上下文对象,是进行Spark应用开发的主要接口,是Spark上层应用与底层实现的中转站(SparkContext负责给executors发送task)。
SparkContext在初始化过程中,主要涉及一下内容:
- SparkEnv
- DAGScheduler
- TaskScheduler
- SchedulerBackend
- SparkUI
SparkContext的构造函数中最重要的入参是SparkConf。SparkContext进行初始化的时候,首先要根据初始化入参来构建SparkConf对象,进而再去创建SparkEnv。
创建SparkConf对象来管理spark应用的属性设置。SparkConf类比较简单,是通过一个HashMap容器来管理key、value类型的属性。
下图为SparkConf类声明,其中setting变量为HashMap容器:
下面是SparkContext类中,关于SparkConf对象的拷贝过程:
这是典型的观察者模式,向LiveListenerBus类注册不同类型的SparkListenerEvent事件,SparkListenerBus会遍历它的所有监听者SparkListener,然后找出事件对应的接口进行响应。
下面是SparkContext创建LiveListenerBus对象:
// An asynchronous listener bus for Spark events
private[spark] val listenerBus = new LiveListenerBus
在SparkEnv中创建了MapOutputTracker、MasterActor、BlockManager、CacheManager、HttpFileServer一系列对象。
下图为生成SparkEnv的代码:
SparkEnv的构造函数入参列表为:
class SparkEnv ( val executorId: String, val actorSystem: ActorSystem, val serializer: Serializer, val closureSerializer: Serializer, val cacheManager: CacheManager, val mapOutputTracker: MapOutputTracker, val shuffleManager: ShuffleManager, val broadcastManager: BroadcastManager, val blockTransferService: BlockTransferService, val blockManager: BlockManager, val securityManager: SecurityManager, val httpFileServer: HttpFileServer, val sparkFilesDir: String, val metricsSystem: MetricsSystem, val shuffleMemoryManager: ShuffleMemoryManager, val outputCommitCoordinator: OutputCommitCoordinator, val conf: SparkConf) extends Logging
这里说明几个入参的作用:
- cacheManager: 用于存储中间计算结果
- mapOutputTracker: 用来缓存MapStatus信息,并提供从MapOutputMaster获取信息的功能
- shuffleManager: 路由维护表
- broadcastManager: 广播
- blockManager: 块管理
- securityManager: 安全管理
- httpFileServer: 文件存储服务器
*l sparkFilesDir: 文件存储目录- metricsSystem: 测量
- conf: 配置文件
其中,在SparkUI对象初始化函数中,注册了StorageStatusListener监听器,负责监听Storage的变化及时的展示到Spark web页面上。attachTab方法中添加对象正是我们在Spark Web页面中看到的那个标签。
/** Initialize all components of the server. */
def initialize() {
attachTab(new JobsTab(this))
val stagesTab = new StagesTab(this)
attachTab(stagesTab)
attachTab(new StorageTab(this))
attachTab(new EnvironmentTab(this))
attachTab(new ExecutorsTab(this))
attachHandler(createStaticHandler(SparkUI.STATIC_RESOURCE_DIR, "/static"))
attachHandler(createRedirectHandler("/", "/jobs", basePath = basePath))
attachHandler(
createRedirectHandler("/stages/stage/kill", "/stages", stagesTab.handleKillRequest))
}
在SparkContext中, 最主要的初始化工作就是创建TaskScheduler和DAGScheduler, 这两个就是Spark的核心所在。
Spark的设计非常的干净, 把整个DAG抽象层从实际的task执行中剥离了出来DAGScheduler, 负责解析spark命令,生成stage, 形成DAG, 最终划分成tasks, 提交给TaskScheduler, 他只完成静态分析TaskScheduler,专门负责task执行, 他只负责资源管理, task分配, 执行情况的报告。
这样设计的好处, 就是Spark可以通过提供不同的TaskScheduler简单的支持各种资源调度和执行平台
下面代码是根据Spark的运行模式来选择相应的SchedulerBackend,同时启动TaskScheduler:
其中,createTaskScheduler
最为关键的一点就是根据master变量来判断Spark当前的部署方式,进而生成相应的SchedulerBackend的不同子类。创建的SchedulerBackend放置在TaskScheduler中,在后续的Task分发过程中扮演着重要角色。
TaskScheduler.start
的目的是启动相应的SchedulerBackend,并启动定时器进行检测,下面是该函数源码(定义在TaskSchedulerImpl.scala
文件中):
override def start() {
backend.start()
if (!isLocal && conf.getBoolean("spark.speculation", false)) {
logInfo("Starting speculative execution thread")
import sc.env.actorSystem.dispatcher
sc.env.actorSystem.scheduler.schedule(SPECULATION_INTERVAL milliseconds,
SPECULATION_INTERVAL milliseconds) {
Utils.tryOrExit { checkSpeculatableTasks() }
}
}
}
这个默认是关闭的,可以通过spark.eventLog.enabled配置开启。它主要功能是以json格式记录发生的事件:
// Optionally log Spark events
private[spark] val eventLogger: Option[EventLoggingListener] = {
if (isEventLogEnabled) {
val logger =
new EventLoggingListener(applicationId, eventLogDir.get, conf, hadoopConfiguration)
logger.start()
listenerBus.addListener(logger)
Some(logger)
} else None
}
往LiveListenerBus中加入了SparkListenerEnvironmentUpdate、SparkListenerApplicationStart两类事件,对这两种事件监听的监听器就会调用onEnvironmentUpdate、onApplicationStart方法进行处理。
setupAndStartListenerBus()
postEnvironmentUpdate()
postApplicationStart()
要载入被处理的数据, 最常用的textFile, 其实就是生成HadoopRDD, 作为起始的RDD
/** * Read a text file from HDFS, a local file system (available on all nodes), or any * Hadoop-supported file system URI, and return it as an RDD of Strings. */
def textFile(path: String, minPartitions: Int = defaultMinPartitions): RDD[String] = {
assertNotStopped()
hadoopFile(path, classOf[TextInputFormat], classOf[LongWritable], classOf[Text],
minPartitions).map(pair => pair._2.toString).setName(path)
}
/** Get an RDD for a Hadoop file with an arbitrary InputFormat * * '''Note:''' Because Hadoop's RecordReader class re-uses the same Writable object for each * record, directly caching the returned RDD or directly passing it to an aggregation or shuffle * operation will create many references to the same object. * If you plan to directly cache, sort, or aggregate Hadoop writable objects, you should first * copy them using a `map` function. */
def hadoopFile[K, V](
path: String,
inputFormatClass: Class[_ <: InputFormat[K, V]],
keyClass: Class[K],
valueClass: Class[V],
minPartitions: Int = defaultMinPartitions
): RDD[(K, V)] = {
assertNotStopped()
// A Hadoop configuration can be about 10 KB, which is pretty big, so broadcast it.
val confBroadcast = broadcast(new SerializableWritable(hadoopConfiguration))
val setInputPathsFunc = (jobConf: JobConf) => FileInputFormat.setInputPaths(jobConf, path)
new HadoopRDD(
this,
confBroadcast,
Some(setInputPathsFunc),
inputFormatClass,
keyClass,
valueClass,
minPartitions).setName(path)
}
关键在于调用了dagScheduler.runJob
/** * Run a function on a given set of partitions in an RDD and pass the results to the given * handler function. This is the main entry point for all actions in Spark. The allowLocal * flag specifies whether the scheduler can run the computation on the driver rather than * shipping it out to the cluster, for short actions like first(). */
def runJob[T, U: ClassTag](
rdd: RDD[T],
func: (TaskContext, Iterator[T]) => U,
partitions: Seq[Int],
allowLocal: Boolean,
resultHandler: (Int, U) => Unit) {
if (stopped) {
throw new IllegalStateException("SparkContext has been shutdown")
}
val callSite = getCallSite
val cleanedFunc = clean(func)
logInfo("Starting job: " + callSite.shortForm)
if (conf.getBoolean("spark.logLineage", false)) {
logInfo("RDD's recursive dependencies:\n" + rdd.toDebugString)
}
dagScheduler.runJob(rdd, cleanedFunc, partitions, callSite, allowLocal,
resultHandler, localProperties.get)
progressBar.foreach(_.finishAll())
rdd.doCheckpoint()
}
以上的源码解读基于spark-1.3.1源代码工程文件
转载请注明作者Jason Ding及其出处
GitCafe博客主页(http://jasonding1354.gitcafe.io/)
Github博客主页(http://jasonding1354.github.io/)
CSDN博客(http://blog.csdn.net/jasonding1354)
简书主页(http://www.jianshu.com/users/2bd9b48f6ea8/latest_articles)
Google搜索jasonding1354进入我的博客主页