①积分图像的实现
首先在Integral.cpp里面找到Integral(),如下:
IplImage *Integral(IplImage *source) { //转换成单通道图像 convert the image to single channel 32f IplImage *img = getGray(source); IplImage *int_img = cvCreateImage(cvGetSize(img), IPL_DEPTH_32F, 1); //给变量赋值 set up variables for data access int height = img->height; int width = img->width; int step = img->widthStep/sizeof(float); float *data = (float *) img->imageData; float *i_data = (float *) int_img->imageData; //仅限第一行 first row only float rs = 0.0f; for(int j=0; j<width; j++) { rs += data[j]; i_data[j] = rs; } //把左边和上边的像素进行积分 remaining cells are sum above and to the left for(int i=1; i<height; ++i) { rs = 0.0f; for(int j=0; j<width; ++j) { rs += data[i*step+j]; i_data[i*step+j] = rs + i_data[(i-1)*step+j]; } } //释放灰度图 release the gray image cvReleaseImage(&img); //返回积分图像 return the integral image return int_img; }
1. 首先将原输入转化为灰度图像,并创建一个大小等于灰度图像gray-image的图像数组--积分图像int_img。
2. 获取图像的信息,比如大小(高height和宽width)以及gray-image和积分图像int_img的数据首地址data && i_data。(注意此时数据类型为float)
3. 首先计算第一行像素的积分值,相当于一维数据的累加。其他数据通过迭代计算获取,i_data[i*step+j] = rs + i_data[(i-1)*step+j],若当前点为(i,j),其中rs就为第 i 行第 j 列之前(包括第 i 行第 j 列)所有像素值和。 如下所示:
[其中黑色为当前点i_data[i*step+j],绿色为当前点同一列上一行的点i_data[(i-1)*step+j],而rs=横放着的和黑色点同行的那块矩形框对应的区域像素值之和]
4. 释放灰度图像,并返回积分图像。
integral.h中的相关函数: BoxIntegral().
inline float BoxIntegral(IplImage *img, int row, int col, int rows, int cols)
其中,几个参数意思分别为源图像,row,col为A点的坐标值,rows和cols分别为高和宽。
利用上面的积分图像计算 A B 这样的box区域里面所有像素点的灰度值之和。S=int_img(D)+int_img(A)-int_img(B)-int_img(C).
C D
②Hessian矩阵特征的计算
FastHessian,计算hessian矩阵的类,它的定义在fasthessian.h里,实现在fasthessian.cpp里。
class FastHessian { public: //! Constructor without image FastHessian(std::vector<Ipoint> &ipts, const int octaves = OCTAVES, const int intervals = INTERVALS, const int init_sample = INIT_SAMPLE, const float thres = THRES); //! Constructor with image FastHessian(IplImage *img, std::vector<Ipoint> &ipts, const int octaves = OCTAVES, const int intervals = INTERVALS, const int init_sample = INIT_SAMPLE, const float thres = THRES); //! Destructor ~FastHessian(); //! Save the parameters void saveParameters(const int octaves, const int intervals, const int init_sample, const float thres); //!设置或重设源积分图像 Set or re-set the integral image source void setIntImage(IplImage *img); //!寻找图像特征并写入特征向量 Find the image features and write into vector of features void getIpoints(); private: //---------------- Private Functions -----------------// //! Build map of DoH(Determinant of Hessian) responses void buildResponseMap(); //! Calculate DoH responses for supplied layer void buildResponseLayer(ResponseLayer *r); //! 3x3x3 Extrema test int isExtremum(int r, int c, ResponseLayer *t, ResponseLayer *m, ResponseLayer *b); //! 插值函数Interpolation functions - adapted from Lowe's SIFT implementation void interpolateExtremum(int r, int c, ResponseLayer *t, ResponseLayer *m, ResponseLayer *b); void interpolateStep(int r, int c, ResponseLayer *t, ResponseLayer *m, ResponseLayer *b, double* xi, double* xr, double* xc ); CvMat* deriv3D(int r, int c, ResponseLayer *t, ResponseLayer *m, ResponseLayer *b); CvMat* hessian3D(int r, int c, ResponseLayer *t, ResponseLayer *m, ResponseLayer *b); //---------------- Private Variables -----------------// //! Pointer to the integral Image, and its attributes IplImage *img; int i_width, i_height; //! Reference to vector of features passed from outside std::vector<Ipoint> &ipts; //!海森矩阵行列式的响应栈 Response stack of determinant of hessian values std::vector<ResponseLayer *> responseMap; //! 高斯金字塔的组数 int octaves; //! 每组的层数 int intervals; //! 特征点检测的初始抽样步骤 Initial sampling step for Ipoint detection int init_sample; //! Threshold value for blob resonses float thresh; };
在public里面定义了两种构造函数分别对应有无源图像这一项参数,紧接着还定义了析构函数~FastHessian等函数。下面在fasthessian.cpp对这些函数的实现一一解释:
两个构造函数都是调用了saveParameters(octaves, intervals, init_sample, thresh)设置构造金字塔的参数,而带图像的构造函数另外多加了一句setIntImage(img)用来设置当前图像。
//! Save the parameters void FastHessian::saveParameters(const int octaves, const int intervals, const int init_sample, const float thresh) { // Initialise variables with bounds-checked values this->octaves = (octaves > 0 && octaves <= 4 ? octaves : OCTAVES); this->intervals = (intervals > 0 && intervals <= 4 ? intervals : INTERVALS); this->init_sample = (init_sample > 0 && init_sample <= 6 ? init_sample : INIT_SAMPLE); this->thresh = (thresh >= 0 ? thresh : THRES); } //! Set or re-set the integral image source void FastHessian::setIntImage(IplImage *img) { // Change the source image this->img = img; i_height = img->height; i_width = img->width; }由于在h头文件中已设置
static const int OCTAVES = 5;//组数 static const int INTERVALS = 4;//每组层数 static const float THRES = 0.0004f;//阈值 static const int INIT_SAMPLE = 2;//初始采样因子
所以 saveParameters的作用就是调整参数,以防过大或过小。
FastHessian::getIpoints()提取兴趣点:
//! Find the image features and write into vector of features void FastHessian::getIpoints() { // filter index map static const int filter_map [OCTAVES][INTERVALS] = {{0,1,2,3}, {1,3,4,5}, {3,5,6,7}, {5,7,8,9}, {7,9,10,11}}; // Clear the vector of exisiting ipts ipts.clear(); // Build the response map buildResponseMap(); // Get the response layers ...<BR> ... }
首先初始化filter_map,清空标记特征点的ipts结构体。
创建高斯平滑层函数参数ResponseMap(),大小与论文所给完全一致,
// Oct1: 9, 15, 21, 27
// Oct2: 15, 27, 39, 51
// Oct3: 27, 51, 75, 99
// Oct4: 51, 99, 147,195
// Oct5: 99, 195,291,387
这些都是每组模板的大小,每组间隔递增,6,12,24,48,96 。ResponseMap这个结构体向量包含4个参数ResponseLayer(int width, int height, int step, int filter)定义在responsemap.h里面,其中width和height等于实际图像大小除以step(step初始值为2),而filter则是滤波器半径。
然后使用buildResponseLayer(responseMap[i])对图像处理后将数据存放在responses和laplacian两个数组里面。
void FastHessian::buildResponseLayer(ResponseLayer *rl) { float *responses = rl->responses; // response storage unsigned char *laplacian = rl->laplacian; // laplacian sign storage int step = rl->step; // step size for this filter 滤波器尺度因子 int b = (rl->filter - 1) / 2; // border for this filter 滤波器边界 int l = rl->filter / 3; // lobe for this filter (filter size / 3) int w = rl->filter; // filter size 滤波器大小 float inverse_area = 1.f/(w*w); // normalisation factor 标准化因子 float Dxx, Dyy, Dxy; for(int r, c, ar = 0, index = 0; ar < rl->height; ++ar) { for(int ac = 0; ac < rl->width; ++ac, index++) { // get the image coordinates r = ar * step; c = ac * step; // Compute response components Dxx = BoxIntegral(img, r - l + 1, c - b, 2*l - 1, w) - BoxIntegral(img, r - l + 1, c - l / 2, 2*l - 1, l)*3; Dyy = BoxIntegral(img, r - b, c - l + 1, w, 2*l - 1) - BoxIntegral(img, r - l / 2, c - l + 1, l, 2*l - 1)*3; Dxy = + BoxIntegral(img, r - l, c + 1, l, l) + BoxIntegral(img, r + 1, c - l, l, l) - BoxIntegral(img, r - l, c - l, l, l) - BoxIntegral(img, r + 1, c + 1, l, l); // Normalise the filter responses with respect to their size Dxx *= inverse_area; Dyy *= inverse_area; Dxy *= inverse_area; // Get the determinant of hessian response & laplacian sign responses[index] = (Dxx * Dyy - 0.81f * Dxy * Dxy); laplacian[index] = (Dxx + Dyy >= 0 ? 1 : 0); #ifdef RL_DEBUG // create list of the image coords for each response rl->coords.push_back(std::make_pair<int,int>(r,c)); #endif } } }
其中计算Dxy和Dyy的示意图如下,其他的Dxx(Dyy的转置)读者自己参考。【此时w=9,l=9/3=3,对应于右图的总计算区域高度和宽度2*l-1】
圆点为当前点,将红色方形区域1内的积分值减去绿色方形2区域内的积分值=Dxy*w2
绿色方形区域2内的积分值减去2*红色色方形区域1内的积分值=Dyy*w2 (==用一整块区域-3*红色区域)
最后将计算后的结果存放到ResponseLayer里面的response和laplacian一维数组里,数组的大小即为ResponseLayer->width * ResponseLayer->width。
这样就计算出了每一层的所有像素点的det(Happrox)=Dxx*Dyy-(0.9*Dxy)2,下面开始判断当前点是否是极值点。