A very hard mathematic problem
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3578 Accepted Submission(s): 1052
Problem Description
Haoren is very good at solving mathematic problems. Today he is working a problem like this:
Find three positive integers X, Y and Z (X < Y, Z > 1) that holds
X^Z + Y^Z + XYZ = K
where K is another given integer.
Here the operator “^” means power, e.g., 2^3 = 2 * 2 * 2.
Finding a solution is quite easy to Haoren. Now he wants to challenge more: What’s the total number of different solutions?
Surprisingly, he is unable to solve this one. It seems that it’s really a very hard mathematic problem.
Now, it’s your turn.
Input
There are multiple test cases.
For each case, there is only one integer K (0 < K < 2^31) in a line.
K = 0 implies the end of input.
Output
Output the total number of solutions in a line for each test case.
Sample Input
Sample Output
1
1
0
Hint
9 = 1^2 + 2^2 + 1 * 2 * 2 53 = 2^3 + 3^3 + 2 * 3 * 3
题目大意很简单,解题思路也比较容易想的,先枚举z再枚举x然后二分y即可,时间用了200ms-。自己写的时候竟然因为用了库函数自带的pow函数然后有精度的损失,记得以前碰过这样的。一直以为是自己二分或者是范围枚举出错了。。。
题目地址:A very hard mathematic problem
AC代码:
#include<iostream>
#include<cstring>
#include<cmath>
#include<string>
using namespace std;
long long pow1(long long a,long long p)
{
long long s=1;
while(p)
{
if(p&1)
s*=a;
a*=a;
p>>=1;
}
return s;
}
int main()
{
long long k;
long long x,y,z;
long long res,flag;
while(cin>>k&&k)
{
res=0;
for(z=2;z<=30;z++) //枚举z
{
long long tmp=pow(k/2.0,1.0/z);
long long tmp1=pow(k*1.0,1.0/z);
for(x=1;x<=tmp;x++) //枚举x
{
flag=0;
long long l,r;
l=x+1,r=tmp1;
while(l<=r) //二分y
{
y=(l+r)>>1;
long long s=pow1(x,z)+pow1(y,z)+x*y*z;
if(s>k) r=y-1;
else if(s<k) l=y+1;
else
{
flag=1;
break;
}
}
if(flag) {res++;}
}
}
cout<<res<<endl;
}
return 0;
}
/*
625
*/
//187MS