运行这个程序需要预先设置栈内存和文件描述符上限, 否则运行失败
ulimit -n 16384
ulimit -s 4096
文件名:server.c
编译: gcc server.c -Wall -O2 -pthread -o server
程序源码如下(请自行编辑宏定义SERVER_IP为自己的IP):
cpp 代码:
/*Linux 2.6 x86_64 only*/ #include <stdio.h> #include <string.h> #include <stdlib.h> #include <time.h> #include <unistd.h> #include <sys/epoll.h> #include <sys/stat.h> #include <sys/types.h> #include <sys/socket.h> #include <netinet/in.h> #include <arpa/inet.h> #include <unistd.h> #include <netdb.h> #include <pthread.h> #define THREAD_MAX 4096 #define LISTEN_MAX 5000 #define SERVER_IP "192.168.1.103" typedef struct { char ip4[128]; int port; int fd; } LISTEN_INFO; //服务器参数 static LISTEN_INFO s_listens[LISTEN_MAX]; //线程池参数 static unsigned int s_thread_para[THREAD_MAX][8];//线程参数 static pthread_t s_tid[THREAD_MAX];//线程ID pthread_mutex_t s_mutex[THREAD_MAX];//线程锁 //私有函数 static int init_thread_pool(void); static int init_listen4(char *ip4, int port, int max_link); //线程函数 void * test_server4(unsigned int thread_para[]); int main(int argc, char *argv[])//客户端驱动 { //临时变量 int i, j, rc; int sock_listen; //监听套接字 int sock_cli; //客户端连接 int listen_index; int epfd; int nfds; struct epoll_event ev; struct epoll_event events[LISTEN_MAX]; socklen_t addrlen; //地址信息长度 struct sockaddr_in addr4; //IPv4地址结构 //线程池初始化 rc = init_thread_pool(); if (0 != rc) exit(-1); //初始化服务监听 for(i = 0; i < LISTEN_MAX; i++) { sprintf(s_listens[i].ip4, "%s", SERVER_IP); s_listens[i].port = 8000 + i; //创建监听 rc = init_listen4(s_listens[i].ip4, s_listens[i].port, 64); if (0 > rc) { fprintf(stderr, "无法创建服务器监听于%s:%d/r/n", s_listens[i].ip4, s_listens[i].port); exit(-1); } s_listens[i].fd = rc; } //设置集合 epfd = epoll_create(8192); for (i = 0; i < LISTEN_MAX; i++) { //加入epoll事件集合 ev.events = EPOLLIN; ev.data.u32 = i;//记录listen数组下标 if (epoll_ctl(epfd, EPOLL_CTL_ADD, s_listens[i].fd, &ev) < 0) { fprintf(stderr, "向epoll集合添加套接字失败(fd =%d)/r/n", rc); exit(-1); } } //服务循环 for( ; ; ) { //等待epoll事件 nfds = epoll_wait(epfd, events, LISTEN_MAX, -1); //处理epoll事件 for(i = 0; i < nfds; i++) { //接收客户端连接 listen_index = events[i].data.u32; sock_listen = s_listens[listen_index].fd; addrlen = sizeof(struct sockaddr_in); bzero(&addr4, addrlen); sock_cli = accept(sock_listen, (struct sockaddr *)&addr4, &addrlen); if(0 > sock_cli) { fprintf(stderr, "接收客户端连接失败/n"); continue; } //查询空闲线程对 for(j = 0; j < THREAD_MAX; j++) { if (0 == s_thread_para[j][0]) break; } if (j >= THREAD_MAX) { fprintf(stderr, "线程池已满, 连接将被放弃/r/n"); shutdown(sock_cli, SHUT_RDWR); close(sock_cli); continue; } //复制有关参数 s_thread_para[j][0] = 1;//设置活动标志为"活动" s_thread_para[j][1] = sock_cli;//客户端连接 s_thread_para[j][2] = listen_index;//服务索引 //线程解锁 pthread_mutex_unlock(s_mutex + j); }//end of for(i;;) }//end of for(;;) exit(0); } static int init_thread_pool(void) { int i, rc; //初始化线程池参数 for(i = 0; i < THREAD_MAX; i++) { s_thread_para[i][0] = 0;//设置线程占用标志为"空闲" s_thread_para[i][7] = i;//线程池索引 pthread_mutex_lock(s_mutex + i);//线程锁 } //创建线程池 for(i = 0; i < THREAD_MAX; i++) { rc = pthread_create(s_tid + i, 0, (void *)test_server4, (void *)(s_thread_para[i])); if (0 != rc) { fprintf(stderr, "线程创建失败/n"); return(-1); } } //成功返回 return(0); } static int init_listen4(char *ip4, int port, int max_link) { //临时变量 int sock_listen4; struct sockaddr_in addr4; unsigned int optval; struct linger optval1; //初始化数据结构 bzero(&addr4, sizeof(addr4)); inet_pton(AF_INET, ip4, &(addr4.sin_addr)); addr4.sin_family = AF_INET; addr4.sin_port = htons(port); //创建SOCKET sock_listen4 = socket(AF_INET, SOCK_STREAM, 0); if (0 > sock_listen4) return(-1); //设置SO_REUSEADDR选项(服务器快速重起) optval = 0x1; setsockopt(sock_listen4, SOL_SOCKET, SO_REUSEADDR, &optval, 4); //设置SO_LINGER选项(防范CLOSE_WAIT挂住所有套接字) optval1.l_onoff = 1; optval1.l_linger = 60; setsockopt(sock_listen4, SOL_SOCKET, SO_LINGER, &optval1, sizeof(struct linger)); if (0 > bind(sock_listen4, (struct sockaddr *)&addr4, sizeof(addr4))) { close(sock_listen4); return(-1); } if (0 > listen(sock_listen4, max_link)) { close(sock_listen4); return(-1); } return(sock_listen4); } void * test_server4(unsigned int thread_para[]) { //临时变量 int pool_index; //线程池索引 int sock_cli; //客户端连接 int listen_index; //监听索引 char buff[32768]; //传输缓冲区 char *p; int i, j, len; //线程脱离创建者 pthread_detach(pthread_self()); pool_index = thread_para[7]; wait_unlock: pthread_mutex_lock(s_mutex + pool_index);//等待线程解锁 //线程变量内容复制 sock_cli = thread_para[1];//客户端连接 listen_index = thread_para[2];//监听索引 //接收请求 len = recv(sock_cli, buff, 32768, MSG_NOSIGNAL); //构造响应 p = buff; //HTTP头 p += sprintf(p, "HTTP/1.1 200 OK/r/n"); p += sprintf(p, "Content-Type: text/html/r/n"); p += sprintf(p, "Connection: closed/r/n/r/n"); //页面 p += sprintf(p, "<html>/r/n<head>/r/n"); p += sprintf(p, "<meta content=/"text/html; charset=UTF-8/" http-equiv=/"Content-Type/">/r/n"); p += sprintf(p, "</head>/r/n"); p += sprintf(p, "<body style="/" mce_style="/""background-color: rgb(229, 229, 229);/">/r/n"); p += sprintf(p, "<center>/r/n"); p += sprintf(p, "<H3>连接状态</H3>/r/n"); p += sprintf(p, "<p>服务器地址 %s:%d</p>/r/n", s_listens[listen_index].ip4, s_listens[listen_index].port); j = 0; for(i = 0; i < THREAD_MAX; i++) { if (0 != s_thread_para[i][0]) j++; } p += sprintf(p, "<H3>线程池状态</H3>/r/n"); p += sprintf(p, "<p>线程池总数 %d 活动线程总数 %d</p>/r/n", THREAD_MAX, j); p += sprintf(p, "</center></body></html>/r/n"); len = p - buff; //发送响应 send(sock_cli, buff, len, MSG_NOSIGNAL); //释放连接 shutdown(sock_cli, SHUT_RDWR); close(sock_cli); //线程任务结束 thread_para[0] = 0;//设置线程占用标志为"空闲" goto wait_unlock; pthread_exit(NULL); }