本文分析Catalyst Optimize部分实现的对逻辑执行计划(LogicalPlan)的处理规则。
Optimizer处理的是LogicalPlan对象。
Optimizer的batches如下:object Optimizer extends RuleExecutor[LogicalPlan] { val batches = Batch("ConstantFolding", Once, ConstantFolding, // 可静态分析的常量表达式 BooleanSimplification, // 布尔表达式提前短路 SimplifyFilters, // 简化过滤操作(false, true, null) SimplifyCasts) :: // 简化转换(对象所属类已经是Cast目标类) Batch("Filter Pushdown", Once, CombineFilters, // 相邻(上下级)Filter操作合并 PushPredicateThroughProject, // 映射操作中的Filter谓词下推 PushPredicateThroughInnerJoin) :: Nil // inner join操作谓词下推 }
这是4.1号最新的Catalyst Optimizer的代码。
把可以静态分析出结果的表达式替换成Literal表达式。
object ConstantFolding extends Rule[LogicalPlan] { def apply(plan: LogicalPlan): LogicalPlan = plan transform { case q: LogicalPlan => q transformExpressionsDown { // Skip redundant folding of literals. case l: Literal => l case e if e.foldable => Literal(e.apply(null), e.dataType) } } }
Literal能处理的类型包括Int, Long, Double, Float, Byte,Short, String, Boolean, null。这些类型分别对应的是Catalyst框架的DataType,包括IntegerType, LongType, DoubleType,FloatType, ByteType, ShortType, StringType, BooleanType, NullType。
普通的Literal是不可变的,还有一个可变的MutalLiteral类,有update方法可以改变里面的value。
提前短路可以短路的布尔表达式
object BooleanSimplification extends Rule[LogicalPlan] { def apply(plan: LogicalPlan): LogicalPlan = plan transform { case q: LogicalPlan => q transformExpressionsUp { case and @ And(left, right) => (left, right) match { case (Literal(true, BooleanType), r) => r case (l, Literal(true, BooleanType)) => l case (Literal(false, BooleanType), _) => Literal(false) case (_, Literal(false, BooleanType)) => Literal(false) case (_, _) => and } case or @ Or(left, right) => (left, right) match { case (Literal(true, BooleanType), _) => Literal(true) case (_, Literal(true, BooleanType)) => Literal(true) case (Literal(false, BooleanType), r) => r case (l, Literal(false, BooleanType)) => l case (_, _) => or } } } }
提前处理可以被判断的过滤操作
object SimplifyFilters extends Rule[LogicalPlan] { def apply(plan: LogicalPlan): LogicalPlan = plan transform { case Filter(Literal(true, BooleanType), child) => child case Filter(Literal(null, _), child) => LocalRelation(child.output) case Filter(Literal(false, BooleanType), child) => LocalRelation(child.output) } }
把已经是目标类的Cast表达式替换掉
object SimplifyCasts extends Rule[LogicalPlan] { def apply(plan: LogicalPlan): LogicalPlan = plan transformAllExpressions { case Cast(e, dataType) if e.dataType == dataType => e } }
相邻都是过滤操作的话,把两个过滤操作合起来。相邻指的是上下两级。
object CombineFilters extends Rule[LogicalPlan] { def apply(plan: LogicalPlan): LogicalPlan = plan transform { case ff @ Filter(fc, nf @ Filter(nc, grandChild)) => Filter(And(nc, fc), grandChild) } }
把Project操作中的过滤操作下推。这一步里顺带做了别名转换的操作(认为开销不大的前提下)。
object PushPredicateThroughProject extends Rule[LogicalPlan] { def apply(plan: LogicalPlan): LogicalPlan = plan transform { case filter @ Filter(condition, project @ Project(fields, grandChild)) => val sourceAliases = fields.collect { case a @ Alias(c, _) => (a.toAttribute: Attribute) -> c }.toMap // 把fields中的别名属性都取出来 project.copy(child = filter.copy( // 生成新的Filter操作 replaceAlias(condition, sourceAliases), // condition中有别名的替换掉 grandChild)) } def replaceAlias(condition: Expression, sourceAliases: Map[Attribute, Expression]): Expression = { condition transform { case a: AttributeReference => sourceAliases.getOrElse(a, a) } } }
先找到Filter操作,若Filter操作里面是一次inner join,那么先把Filter条件和inner join条件先全部取出来,
然后把只涉及到左侧或右侧的过滤操作下推到join外部,把剩下来不能下推的条件放到join操作的condition里。
object PushPredicateThroughInnerJoin extends Rule[LogicalPlan] with PredicateHelper { def apply(plan: LogicalPlan): LogicalPlan = plan transform { case f @ Filter(filterCondition, Join(left, right, Inner, joinCondition)) => // 这一步是把过滤条件和join条件里的condition都提取出来 val allConditions = splitConjunctivePredicates(filterCondition) ++ joinCondition.map(splitConjunctivePredicates).getOrElse(Nil) // 把参考属性都属于右侧输出属性的condition挑选到rightCondition里 val (rightConditions, leftOrJoinConditions) = allConditions.partition(_.references subsetOf right.outputSet) // 同理,把剩余condition里面,参考属性都属于左侧输出属性的condition挑选到 // leftCondition里,剩余的就属于joinCondition val (leftConditions, joinConditions) = leftOrJoinConditions.partition(_.references subsetOf left.outputSet) // 生成新的left和right:先把condition里的操作用AND折叠起来,然后将该折叠后的表达式和原始的left/right logical plan合起来生成新的Filter操作,即新的Fil // ter logical plan // 这样就做到了把过滤条件中的谓词下推到了left/right里,即本次inner join的“外部” val newLeft = leftConditions.reduceLeftOption(And).map(Filter(_, left)).getOrElse(left) val newRight = rightConditions.reduceLeftOption(And).map(Filter(_, right)).getOrElse(right) Join(newLeft, newRight, Inner, joinConditions.reduceLeftOption(And)) } }
Join操作(LogicalPlan的Binary)
case class Join( left: LogicalPlan, right: LogicalPlan, joinType: JoinType, condition: Option[Expression]) extends BinaryNode { def references = condition.map(_.references).getOrElse(Set.empty) def output = left.output ++ right.output }
Filter操作(LogicalPlan的Unary)
case class Filter(condition: Expression, child: LogicalPlan) extends UnaryNode { def output = child.output def references = condition.references }
reduceLeftOption逻辑是这样的:
def reduceLeftOption[B >: A](op: (B, A) => B): Option[B] = if (isEmpty) None else Some(reduceLeft(op))
reduceLeft(op)的结果是op( op( ... op(x_1, x_2) ...,x_{n-1}), x_n)
谓词助手这个trait,负责把And操作里的condition分离开,返回表达式Seq
trait PredicateHelper { def splitConjunctivePredicates(condition: Expression): Seq[Expression] = condition match { case And(cond1, cond2) => splitConjunctivePredicates(cond1) ++ splitConjunctivePredicates(cond2) case other => other :: Nil } }
case class Person(name:String, age: Int)
case classNum(v1: Int, v2: Int)
SELECT people.age, num.v1, num.v2
FROM
people
JOIN num
ON people.age > 20 and num.v1> 0
WHERE num.v2< 50
== QueryPlan ==
Project [age#1:1,v1#2:2,v2#3:3]
CartesianProduct
Filter(age#1:1 > 20)
ExistingRdd[name#0,age#1], MappedRDD[4] at map at basicOperators.scala:124
Filter((v2#3:1 < 50) && (v1#2:0 > 0))
ExistingRdd [v1#2,v2#3],MappedRDD[10] at map at basicOperators.scala:124
分析:where条件 num.v2 < 50 下推到Join里
SELECT people.age, 1+2
FROM
people
JOIN num
ON people.name<>’abc’ and num.v1> 0
WHERE num.v2 < 50
== QueryPlan ==
Project [age#1:1,3 AS c1#14]
CartesianProduct
Filter NOT(name#0:0 = abc)
ExistingRdd[name#0,age#1], MappedRDD[4] at map at basicOperators.scala:124
Filter((v2#3:1 < 50) && (v1#2:0 > 0))
ExistingRdd[v1#2,v2#3], MappedRDD[10] at map at basicOperators.scala:124
分析:1+2 被提前常量折叠,并被取了一个别名
全文完 :)