- DeepSpeed 常见问题解决方案
申晓容Lucille
DeepSpeed常见问题解决方案DeepSpeedDeepSpeedisadeeplearningoptimizationlibrarythatmakesdistributedtrainingandinferenceeasy,efficient,andeffective.项目地址:https://gitcode.com/gh_mirrors/de/DeepSpeed1.项目基础介绍和主要编程语言
- ubuntu升级python版本
小帆芽芽
ubuntupythonlinux
Ubuntu升级Python版本解压缩文件:下载完成后,解压缩文件:tar-xfPython-3.12.0.tgz编译并安装:进入解压后的目录,然后配置和安装Python:codecdPython-3.12.0./configure--enable-optimizationsmake-j$(nproc)sudomakealtinstall查找安装所在地zhongs@ubuntu:~/HOME/pa
- http和https有哪些不同
星沁城
学习小记httphttps网络协议网络
http和https有哪些不同1.数据传输的安全性:http非加密,https加密2.端口号:http默认80端口,https默认443端口3.性能:http基于tcp三次握手建立连接,https在tcp三次握手后还有TLS协议的四次握手确认加密,所以http建立连接更快。4.SEO影响:搜索引擎更偏向于https的网站。SEO(SearchEngineOptimization,搜索引擎优化)是一
- matlab mle 优化,MLE+: Matlab Toolbox for Integrated Modeling, Control and Optimization for Buildings...
Simon Zhong
matlabmle优化
摘要:FollowingunilateralopticnervesectioninadultPVGhoodedrat,theaxonguidancecueephrin-A2isup-regulatedincaudalbutnotrostralsuperiorcolliculus(SC)andtheEphA5receptorisdown-regulatedinaxotomisedretinalgan
- 【论文速读】| SEAS:大语言模型的自进化对抗性安全优化
云起无垠
论文速读/精读语言模型安全人工智能
本次分享论文:SEAS:Self-EvolvingAdversarialSafetyOptimizationforLargeLanguageModels基本信息原文作者:MuxiDiao,RumeiLi,ShiyangLiu,GuogangLiao,JingangWang,XunliangCai,WeiranXu作者单位:北京邮电大学,美团关键词:大语言模型(LLM),对抗安全,红队,模型优化,自
- Hexagon_DSP_User_Guide(2)
weixin_38498942
tools简介dsp开发开发语言tool
Hexagon_DSP_User_Guide(2)4.2Guidelinesforassemblyandintrinsicoptimization4.2.1Maximizeinstructionsperpacket4.2.1.1Scalarinstructionpackingrules4.2.1.2HVXpackingrules4.2.2Understandandreducestalls4.2.2
- DAG (directed acyclic graph) 作为大数据执行引擎的优点
joeywen
分布式计算StormSparkStorm杂谈StormsparkDAG
TL;DR-ConceptuallyDAGmodelisastrictgeneralizationofMapReducemodel.DAG-basedsystemslikeSparkandTezthatareawareofthewholeDAGofoperationscandobetterglobaloptimizationsthansystemslikeHadoopMapReducewhicha
- 【论文简介】Circle Loss: A Unified Perspective of Pair Similarity Optimization
萝莉狼
machinelearningcirclelossdeepfeaturelearning
CircleLoss:AUnifiedPerspectiveofPairSimilarityOptimization旷世cvpr2020的一篇文章,站在更高的视角,统一了deepfeaturelearning的两大基础loss:基于class-levellabel的loss(如softmax+crossentropy)和基于pair-wiselabel的loss(如tripletloss),指出了
- Circle Loss: A Unified Perspective of Pair Similarity Optimization简要阅读笔记
dailleson_
机器学习机器学习数据挖掘神经网络深度学习自然语言处理
1.背景常见的分类损失函数可以概括为减小类内距离sns_nsn,增大类间距离sps_psp。优化目标如下:min(sn−sp)min(s_n-s_p)min(sn−sp)2.存在的问题优化不够灵活。优化目标对sns_nsn和sps_psp的惩罚作用是相等的,二者的系数都为1。例如{sn,sp}={0.1,0.5}\{s_n,s_p\}=\{0.1,0.5\}{sn,sp}={0.1,0.5}。这个
- [论文笔记]Circle Loss: A Unified Perspective of Pair Similarity Optimization
愤怒的可乐
#文本匹配[论文]论文翻译/笔记自然语言处理论文阅读人工智能
引言为了理解CoSENT的loss,今天来读一下CircleLoss:AUnifiedPerspectiveofPairSimilarityOptimization。为了简单,下文中以翻译的口吻记录,比如替换"作者"为"我们"。这篇论文从对深度特征学习的成对相似度优化角度出发,旨在最大化同类之间的相似度sps_ps
- 探索智能边缘计算:Game-Theoretic-Deep-Reinforcement-Learning
瞿旺晟
探索智能边缘计算:Game-Theoretic-Deep-Reinforcement-LearningGame-Theoretic-Deep-Reinforcement-LearningCodeofPaper"JointTaskOffloadingandResourceOptimizationinNOMA-basedVehicularEdgeComputing:AGame-TheoreticDRL
- 大模型对齐方法笔记一:DPO及其变种IPO、KTO、CPO
chencjiajy
深度学习笔记机器学习人工智能
DPODPO(DirectPreferenceOptimization)出自2023年5月的斯坦福大学研究院的论文《DirectPreferenceOptimization:YourLanguageModelisSecretlyaRewardModel》,大概是2023-2024年最广为人知的RLHF的替代对齐方法了。DPO的主要思想是在强化学习的目标函数中建立决策函数与奖励函数之间的关系,以规避
- day59-graph theory-part09-8.30
bbrruunnoo
python开发语言算法
tasksfortoday:1.digkstra堆优化版47.参加科学大会2.bellman_ford算法94.城市间货物运输I---------------------------------------------------------------------------------1.dijkstra堆优化版Thisisanoptimizationforthevanilladijkstra
- python实现蚁群算法
孺子牛 for world
python算法开发语言
蚁群算法(AntColonyOptimization,ACO)是一种模拟蚂蚁觅食行为的启发式算法,常用于解决优化问题,如旅行商问题(TSP)、调度问题等。这里,将提供一个简化的蚁群算法实现,用于解决旅行商问题(TSP)。蚁群算法(ACO)解决TSP问题的基本步骤:初始化:设置蚂蚁数量、信息素挥发系数、信息素增加强度系数等参数,初始化信息素矩阵。构建解:每只蚂蚁随机选择起点,根据信息素浓度和启发式信
- 理解PyTorch版YOLOv5模型构架
LabVIEW_Python
一个深度学习模型,可以拆解为:模型构架(ModelArchitecture):下面详述激活函数(ActivationFunction):YOLOv5在隐藏层中使用了LeakyReLU激活函数,在最后的检测层中使用了Sigmoid激活函数,参考这里优化函数(OptimizationFunction):YOLOv5的默认优化算法是:SGD;可以通过命令行参数更改为Adam损失函数(LossFuncti
- mojo InlinedString实现及详解
启航学途
Mojomojo
inlined_stringImplementsastringthathasasmall-stringoptimizationwhichavoidsheapallocationsforshortstrings.InlinedStringAstringthatperformssmall-stringoptimizationtoavoidheapallocationsforshortstrings.A
- 【HTML】语义化
全宇宙最最帅气的哆啦A梦小怪兽
html前端
根据内容的结构选择合适的标签优点增加代码可读性,结构清晰,便于开发和维护;对机器友好,文字表现力丰富,有利于SEO。SEO(SearchEngineOptimization)是搜索引擎优化,为了让⽤户在搜索和⽹站相关的关键词的时候,可以使⽹站在搜索引擎的排名尽量靠前,从⽽增加流量。方便设备解析(如盲⼈阅读器等),可⽤于智能分析;在没有CSS样式下,⻚⾯也能呈现出很好地内容结构、代码结构。常见的语义
- Introduction to linear optimization 第二章全部课后题答案
心态与习惯
数学优化linearoptimizationintroduction答案课后题
费了好长时间,终于把这本经典理论教材第二章的课后题做完了。大部分都是证明题,很多都是比较有难度的。不少题我参考了网上找到的一些资料的思路,但是有一些题目我觉得这些网上找到的答案也不太好,自己修正完善了下,少部分题目自己独立完成。我把答案放在一个Jupyterbook上,见链接:第二章答案
- 寻参算法之蜘蛛猴优化算法
Network_Engineer
机器学习启发式算法算法深度学习人工智能机器学习
蜘蛛猴优化算法(SpiderMonkeyOptimization,SMO)来历蜘蛛猴优化算法(SpiderMonkeyOptimization,SMO)是受蜘蛛猴觅食行为启发的一种群体智能优化算法。该算法通过模拟蜘蛛猴在森林中觅食的行为,解决复杂的优化问题。自然界中的原型在自然界中,蜘蛛猴在觅食时会通过跳跃和移动寻找食物。蜘蛛猴群体通过信息共享和合作行为,能够高效地找到食物源。SMO通过模拟这一行
- Go 1.22在性能方面有哪些提升?
Toormi
Golanggolang开发语言后端
Go1.22版本在性能方面进行了多项优化,主要包括以下几个方面:1.内存优化CPU性能提升:Go运行时的内存优化使得CPU性能提高了1-3%。这一改进不仅减少了大多数Go程序的内存开销约1%,还提升了整体运行效率[2]。2.Profile-GuidedOptimization(PGO)改进的PGO:Go1.22继续改进了在Go1.21中引入的PGO功能,特别是在接口方法调用的静态调度方面。通过更好
- Go 1.21在性能方面有哪些提升?
Toormi
Golanggolang开发语言后端
Go1.21版本在性能方面取得了多项重要进展,主要体现在以下几个方面:1.Profile-GuidedOptimization(PGO)Go1.21正式推出了PGO功能,使用PGO构建的Go程序性能通常可提升2-7%[2][5]。编译器本身也采用了PGO优化,使得编译速度提高了2-4%[2][3]。2.垃圾回收优化通过调优垃圾回收器,某些应用程序的尾部延迟可减少高达40%[3]。3.其他性能改进在
- 路径优化算法 | 基于蚁群的城市路径优化算法应用及其Matlab实现
算法如诗
路径优化算法(PathOptimization)算法matlab路径优化算法
蚁群算法(AntColonyOptimization,ACO)是一种模拟自然界中蚂蚁觅食行为的优化算法,用于解决如旅行商问题(TSP)等组合优化问题。在蚁群算法中,每只蚂蚁在搜索路径时都会释放信息素,并根据信息素浓度和其他启发式信息来选择下一个节点。随着时间的推移,较短的路径上累积的信息素会更多,从而吸引更多的蚂蚁,最终找到最优路径。在城市路径优化问题中,蚁群算法可以用于找到连接多个城市的最短路径
- 【改进算法】【IHAOAVOA】天鹰优化算法和非洲秃鹫混合优化算法
科研工作站
智能算法算法智能算法天鹰优化算法非洲秃鹫算法
目录1主要内容IHAOAVOA流程图主要创新点2部分代码3程序结果4下载链接1主要内容该程序复现《IHAOAVOA:AnimprovedhybridaquilaoptimizerandAfricanvulturesoptimizationalgorithmforglobaloptimizationproblems》,天鹰优化算法(AO)和非洲秃鹫算法(AVOA)各有优势:AO具有强大的全局勘探能力
- Introduction CMU最优控制16-745超详细学习笔记
我爱科研00
线性代数动态规划
CMU最优控制16-745超详细学习笔记背景跌跌撞撞入坑Optimization-basedMotionPlanning和OptimalControl已经大半年啦,这大半年来迷迷糊糊看了不少相关资料和论文,想借这个机会来整理一下相关的内容,也算是给自己写论文理清一下思路。去年年底做一个移动机械臂移动操作mobilemanipulation课题看了ETHRSL开源框架OCS2(OptimalCont
- 4.SEO
好好学习_fighting
HTMLhtml
SEO经典真题请描述下SEO中的TDK?什么是SEO?SEO由英文SearchEngineOptimization缩写而来,中文意译为“搜索引擎优化”。其实叫做针对搜索引擎优化更容易理解。它是指从自然搜索结果获得网站流量的技术和过程,是在了解搜索引擎自然排名机制的基础上,对网站进行内部及外部的调整优化,改进网站在搜索引擎中的关键词自然排名,获得更多流量,从而达成网站销售及品牌建设的目标。如何进行S
- 10 中科院1区期刊优化算法|基于开普勒优化-卷积-双向长短期记忆网络-注意力时序预测Matlab程序KOA-CNN-BiLSTM-Attention
机器不会学习CSJ
时间序列预测算法网络matlabcnnlstm深度学习
文章目录一、开普勒优化算法二、CNN卷积神经网络三、BiLSTM双向长短期记忆网络四、注意力机制五、KOA-CNN-BiLSTM-Attention时间序列数据预测模型六、获取方式一、开普勒优化算法基于物理学定律的启发,开普勒优化算法(KeplerOptimizationAlgorithm,KOA)是一种元启发式算法,灵感来源于开普勒的行星运动规律。该算法模拟行星在不同时间的位置和速度,每个行星代
- 06基于WOA-CNN-BiLSTM-Attention鲸鱼优化-卷积-双向长短时记忆-注意力机制的数据分类算法
机器不会学习CSJ
数据分类专栏cnn分类深度学习lstmmatlab启发式算法数据分析
基于WOA-CNN-BiLSTM-Attention鲸鱼优化-卷积-双向长短时记忆-注意力机制的数据分类算法鲸鱼智能优化基本原理鲸鱼智能优化算法(WhaleOptimizationAlgorithm,WOA)是一种基于自然界中的鲸鱼群体行为而提出的全局优化算法。该算法由莫扬(SeyedaliMirjalili)于2016年提出,其灵感来源于鲸鱼群体的捕猎行为和社交行为。在WOA算法中,每个解都被看
- 07基于WOA-CNN-BiLSTM-Attention鲸鱼优化-卷积-双向长短时记忆-注意力机制的时间序列预测算法
机器不会学习CSJ
时间序列预测cnn算法人工智能
文章目录鲸鱼优化算法CNN卷积神经网络BiLSTM双向长短期记忆网络Attention注意力机制WOA-CNN-BiLSTM-Attention鲸鱼优化-卷积-双向长短时记忆-注意力机制数据展示代码程序实验结果获取方式鲸鱼优化算法鲸鱼优化算法(WhaleOptimizationAlgorithm,WOA)是一种启发式优化算法,灵感来源于座头鲸的捕食行为。该算法最早由SeyedaliMirjalil
- 基于WOA优化CNN-LSTM-Attention的回归或时序算法,包含多种CNN-LSTM算法进行对比|Matlab
机器不会学习CSJ
算法深度学习
01基于WOA优化CNN-LSTM-Attention的回归或时序算法,包含多种CNN-LSTM算法进行对比|Matlab基础知识:基于WOA-CNN-LSTM-Attention的数据回归算法是一种利用深度学习技术来进行数据回归分析的方法。它结合了WOA(WhaleOptimizationAlgorithm)、CNN(ConvolutionalNeuralNetwork)、LSTM(LongSh
- 【PyTorch Ligntning】快速上手简明指南
何处闻韶
【PyTorchLightning】
目录一、简介二、安装PyTorchLightning三、定义LightningModule3.1SYSTEMVSMODEL3.2FORWARDvsTRAINING_STEP三、配置LightningTrainer四、基本特性4.1Manualvsautomaticoptimization4.1.1自动优化(Automaticoptimization)4.1.1手动优化(Manualoptimiza
- Java实现的简单双向Map,支持重复Value
superlxw1234
java双向map
关键字:Java双向Map、DualHashBidiMap
有个需求,需要根据即时修改Map结构中的Value值,比如,将Map中所有value=V1的记录改成value=V2,key保持不变。
数据量比较大,遍历Map性能太差,这就需要根据Value先找到Key,然后去修改。
即:既要根据Key找Value,又要根据Value
- PL/SQL触发器基础及例子
百合不是茶
oracle数据库触发器PL/SQL编程
触发器的简介;
触发器的定义就是说某个条件成立的时候,触发器里面所定义的语句就会被自动的执行。因此触发器不需要人为的去调用,也不能调用。触发器和过程函数类似 过程函数必须要调用,
一个表中最多只能有12个触发器类型的,触发器和过程函数相似 触发器不需要调用直接执行,
触发时间:指明触发器何时执行,该值可取:
before:表示在数据库动作之前触发
- [时空与探索]穿越时空的一些问题
comsci
问题
我们还没有进行过任何数学形式上的证明,仅仅是一个猜想.....
这个猜想就是; 任何有质量的物体(哪怕只有一微克)都不可能穿越时空,该物体强行穿越时空的时候,物体的质量会与时空粒子产生反应,物体会变成暗物质,也就是说,任何物体穿越时空会变成暗物质..(暗物质就我的理
- easy ui datagrid上移下移一行
商人shang
js上移下移easyuidatagrid
/**
* 向上移动一行
*
* @param dg
* @param row
*/
function moveupRow(dg, row) {
var datagrid = $(dg);
var index = datagrid.datagrid("getRowIndex", row);
if (isFirstRow(dg, row)) {
- Java反射
oloz
反射
本人菜鸟,今天恰好有时间,写写博客,总结复习一下java反射方面的知识,欢迎大家探讨交流学习指教
首先看看java中的Class
package demo;
public class ClassTest {
/*先了解java中的Class*/
public static void main(String[] args) {
//任何一个类都
- springMVC 使用JSR-303 Validation验证
杨白白
springmvc
JSR-303是一个数据验证的规范,但是spring并没有对其进行实现,Hibernate Validator是实现了这一规范的,通过此这个实现来讲SpringMVC对JSR-303的支持。
JSR-303的校验是基于注解的,首先要把这些注解标记在需要验证的实体类的属性上或是其对应的get方法上。
登录需要验证类
public class Login {
@NotEmpty
- log4j
香水浓
log4j
log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, HTML, DATABASE
#log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, ROLLINGFILE, HTML
#console
log4j.appender.STDOUT=org.apache.log4j.ConsoleAppender
log4
- 使用ajax和history.pushState无刷新改变页面URL
agevs
jquery框架Ajaxhtml5chrome
表现
如果你使用chrome或者firefox等浏览器访问本博客、github.com、plus.google.com等网站时,细心的你会发现页面之间的点击是通过ajax异步请求的,同时页面的URL发生了了改变。并且能够很好的支持浏览器前进和后退。
是什么有这么强大的功能呢?
HTML5里引用了新的API,history.pushState和history.replaceState,就是通过
- centos中文乱码
AILIKES
centosOSssh
一、CentOS系统访问 g.cn ,发现中文乱码。
于是用以前的方式:yum -y install fonts-chinese
CentOS系统安装后,还是不能显示中文字体。我使用 gedit 编辑源码,其中文注释也为乱码。
后来,终于找到以下方法可以解决,需要两个中文支持的包:
fonts-chinese-3.02-12.
- 触发器
baalwolf
触发器
触发器(trigger):监视某种情况,并触发某种操作。
触发器创建语法四要素:1.监视地点(table) 2.监视事件(insert/update/delete) 3.触发时间(after/before) 4.触发事件(insert/update/delete)
语法:
create trigger triggerName
after/before 
- JS正则表达式的i m g
bijian1013
JavaScript正则表达式
g:表示全局(global)模式,即模式将被应用于所有字符串,而非在发现第一个匹配项时立即停止。 i:表示不区分大小写(case-insensitive)模式,即在确定匹配项时忽略模式与字符串的大小写。 m:表示
- HTML5模式和Hashbang模式
bijian1013
JavaScriptAngularJSHashbang模式HTML5模式
我们可以用$locationProvider来配置$location服务(可以采用注入的方式,就像AngularJS中其他所有东西一样)。这里provider的两个参数很有意思,介绍如下。
html5Mode
一个布尔值,标识$location服务是否运行在HTML5模式下。
ha
- [Maven学习笔记六]Maven生命周期
bit1129
maven
从mvn test的输出开始说起
当我们在user-core中执行mvn test时,执行的输出如下:
/software/devsoftware/jdk1.7.0_55/bin/java -Dmaven.home=/software/devsoftware/apache-maven-3.2.1 -Dclassworlds.conf=/software/devs
- 【Hadoop七】基于Yarn的Hadoop Map Reduce容错
bit1129
hadoop
运行于Yarn的Map Reduce作业,可能发生失败的点包括
Task Failure
Application Master Failure
Node Manager Failure
Resource Manager Failure
1. Task Failure
任务执行过程中产生的异常和JVM的意外终止会汇报给Application Master。僵死的任务也会被A
- 记一次数据推送的异常解决端口解决
ronin47
记一次数据推送的异常解决
需求:从db获取数据然后推送到B
程序开发完成,上jboss,刚开始报了很多错,逐一解决,可最后显示连接不到数据库。机房的同事说可以ping 通。
自已画了个图,逐一排除,把linux 防火墙 和 setenforce 设置最低。
service iptables stop
- 巧用视错觉-UI更有趣
brotherlamp
UIui视频ui教程ui自学ui资料
我们每个人在生活中都曾感受过视错觉(optical illusion)的魅力。
视错觉现象是双眼跟我们开的一个玩笑,而我们往往还心甘情愿地接受我们看到的假象。其实不止如此,视觉错现象的背后还有一个重要的科学原理——格式塔原理。
格式塔原理解释了人们如何以视觉方式感觉物体,以及图像的结构,视角,大小等要素是如何影响我们的视觉的。
在下面这篇文章中,我们首先会简单介绍一下格式塔原理中的基本概念,
- 线段树-poj1177-N个矩形求边长(离散化+扫描线)
bylijinnan
数据结构算法线段树
package com.ljn.base;
import java.util.Arrays;
import java.util.Comparator;
import java.util.Set;
import java.util.TreeSet;
/**
* POJ 1177 (线段树+离散化+扫描线),题目链接为http://poj.org/problem?id=1177
- HTTP协议详解
chicony
http协议
引言
- Scala设计模式
chenchao051
设计模式scala
Scala设计模式
我的话: 在国外网站上看到一篇文章,里面详细描述了很多设计模式,并且用Java及Scala两种语言描述,清晰的让我们看到各种常规的设计模式,在Scala中是如何在语言特性层面直接支持的。基于文章很nice,我利用今天的空闲时间将其翻译,希望大家能一起学习,讨论。翻译
- 安装mysql
daizj
mysql安装
安装mysql
(1)删除linux上已经安装的mysql相关库信息。rpm -e xxxxxxx --nodeps (强制删除)
执行命令rpm -qa |grep mysql 检查是否删除干净
(2)执行命令 rpm -i MySQL-server-5.5.31-2.el
- HTTP状态码大全
dcj3sjt126com
http状态码
完整的 HTTP 1.1规范说明书来自于RFC 2616,你可以在http://www.talentdigger.cn/home/link.php?url=d3d3LnJmYy1lZGl0b3Iub3JnLw%3D%3D在线查阅。HTTP 1.1的状态码被标记为新特性,因为许多浏览器只支持 HTTP 1.0。你应只把状态码发送给支持 HTTP 1.1的客户端,支持协议版本可以通过调用request
- asihttprequest上传图片
dcj3sjt126com
ASIHTTPRequest
NSURL *url =@"yourURL";
ASIFormDataRequest*currentRequest =[ASIFormDataRequest requestWithURL:url];
[currentRequest setPostFormat:ASIMultipartFormDataPostFormat];[currentRequest se
- C语言中,关键字static的作用
e200702084
C++cC#
在C语言中,关键字static有三个明显的作用:
1)在函数体,局部的static变量。生存期为程序的整个生命周期,(它存活多长时间);作用域却在函数体内(它在什么地方能被访问(空间))。
一个被声明为静态的变量在这一函数被调用过程中维持其值不变。因为它分配在静态存储区,函数调用结束后并不释放单元,但是在其它的作用域的无法访问。当再次调用这个函数时,这个局部的静态变量还存活,而且用在它的访
- win7/8使用curl
geeksun
win7
1. WIN7/8下要使用curl,需要下载curl-7.20.0-win64-ssl-sspi.zip和Win64OpenSSL_Light-1_0_2d.exe。 下载地址:
http://curl.haxx.se/download.html 请选择不带SSL的版本,否则还需要安装SSL的支持包 2. 可以给Windows增加c
- Creating a Shared Repository; Users Sharing The Repository
hongtoushizi
git
转载自:
http://www.gitguys.com/topics/creating-a-shared-repository-users-sharing-the-repository/ Commands discussed in this section:
git init –bare
git clone
git remote
git pull
git p
- Java实现字符串反转的8种或9种方法
Josh_Persistence
异或反转递归反转二分交换反转java字符串反转栈反转
注:对于第7种使用异或的方式来实现字符串的反转,如果不太看得明白的,可以参照另一篇博客:
http://josh-persistence.iteye.com/blog/2205768
/**
*
*/
package com.wsheng.aggregator.algorithm.string;
import java.util.Stack;
/**
- 代码实现任意容量倒水问题
home198979
PHP算法倒水
形象化设计模式实战 HELLO!架构 redis命令源码解析
倒水问题:有两个杯子,一个A升,一个B升,水有无限多,现要求利用这两杯子装C
- Druid datasource
zhb8015
druid
推荐大家使用数据库连接池 DruidDataSource. http://code.alibabatech.com/wiki/display/Druid/DruidDataSource DruidDataSource经过阿里巴巴数百个应用一年多生产环境运行验证,稳定可靠。 它最重要的特点是:监控、扩展和性能。 下载和Maven配置看这里: http
- 两种启动监听器ApplicationListener和ServletContextListener
spjich
javaspring框架
引言:有时候需要在项目初始化的时候进行一系列工作,比如初始化一个线程池,初始化配置文件,初始化缓存等等,这时候就需要用到启动监听器,下面分别介绍一下两种常用的项目启动监听器
ServletContextListener
特点: 依赖于sevlet容器,需要配置web.xml
使用方法:
public class StartListener implements
- JavaScript Rounding Methods of the Math object
何不笑
JavaScriptMath
The next group of methods has to do with rounding decimal values into integers. Three methods — Math.ceil(), Math.floor(), and Math.round() — handle rounding in differen