//********************************************************** // 函数名: 快速傅立叶变换(来源《C常用算法集》) // 本函数测试OK,可以在TC2.0,VC++6.0,Keil C51测试通过。 // 如果你的MCS51系统有足够的RAM时,可以验证一下用单片机处理FFT有多么的慢。 // // 入口参数: // l: l = 0, 傅立叶变换; l = 1, 逆傅立叶变换 // il: il = 0,不计算傅立叶变换或逆变换模和幅角;il = 1,计算模和幅角 // n: 输入的点数,为偶数,一般为32,64,128,...,1024等 // k: 满足n=2^k(k>0),实质上k是n个采样数据可以分解为偶次幂和奇次幂的次数 // pr[]: l=0时,存放N点采样数据的实部 // l=1时, 存放傅立叶变换的N个实部 // pi[]: l=0时,存放N点采样数据的虚部 // l=1时, 存放傅立叶变换的N个虚部 // // 出口参数: // fr[]: l=0, 返回傅立叶变换的实部 // l=1, 返回逆傅立叶变换的实部 // fi[]: l=0, 返回傅立叶变换的虚部 // l=1, 返回逆傅立叶变换的虚部 // pr[]: il = 1,i = 0 时,返回傅立叶变换的模 // il = 1,i = 1 时,返回逆傅立叶变换的模 // pi[]: il = 1,i = 0 时,返回傅立叶变换的辐角 // il = 1,i = 1 时,返回逆傅立叶变换的辐角 // data: 2005.8.15,Mend Xin Dong #include <math.h> void kkfft(double pr[], double pi[], int n, int k, double fr[], double fi[], int l, int il) { int it,m,is,i,j,nv,l0; double p,q,s,vr,vi,poddr,poddi; for (it=0; it<=n-1; it++) { m = it; is = 0; for(i=0; i<=k-1; i++) { j = m/2; is = 2*is+(m-2*j); m = j; } fr[it] = pr[is]; fi[it] = pi[is]; } //---------------------------- pr[0] = 1.0; pi[0] = 0.0; p = 6.283185306/(1.0*n); pr[1] = cos(p); pi[1] = -sin(p); if (l!=0) pi[1]=-pi[1]; for (i=2; i<=n-1; i++) { p = pr[i-1]*pr[1]; q = pi[i-1]*pi[1]; s = (pr[i-1]+pi[i-1])*(pr[1]+pi[1]); pr[i] = p-q; pi[i] = s-p-q; } for (it=0; it<=n-2; it=it+2) { vr = fr[it]; vi = fi[it]; fr[it] = vr+fr[it+1]; fi[it] = vi+fi[it+1]; fr[it+1] = vr-fr[it+1]; fi[it+1] = vi-fi[it+1]; } m = n/2; nv = 2; for (l0=k-2; l0>=0; l0--) { m = m/2; nv = 2*nv; for(it=0; it<=(m-1)*nv; it=it+nv) for (j=0; j<=(nv/2)-1; j++) { p = pr[m*j]*fr[it+j+nv/2]; q = pi[m*j]*fi[it+j+nv/2]; s = pr[m*j]+pi[m*j]; s = s*(fr[it+j+nv/2]+fi[it+j+nv/2]); poddr = p-q; poddi = s-p-q; fr[it+j+nv/2] = fr[it+j]-poddr; fi[it+j+nv/2] = fi[it+j]-poddi; fr[it+j] = fr[it+j]+poddr; fi[it+j] = fi[it+j]+poddi; } } if(l!=0) for(i=0; i<=n-1; i++) { fr[i] = fr[i]/(1.0*n); fi[i] = fi[i]/(1.0*n); } if(il!=0) for(i=0; i<=n-1; i++) { pr[i] = sqrt(fr[i]*fr[i]+fi[i]*fi[i]); if(fabs(fr[i])<0.000001*fabs(fi[i])) { if ((fi[i]*fr[i])>0) pi[i] = 90.0; else pi[i] = -90.0; } else pi[i] = atan(fi[i]/fr[i])*360.0/6.283185306; } return; }