- 机器学习-------数据标准化
罔闻_spider
数据分析算法机器学习人工智能
什么是归一化,它与标准化的区别是什么?一作用在做训练时,需要先将特征值与标签标准化,可以防止梯度防炸和过拟合;将标签标准化后,网络预测出的数据是符合标准正态分布的—StandarScaler(),与真实值有很大差别。因为StandarScaler()对数据的处理是(真实值-平均值)/标准差。同时在做预测时需要将输出数据逆标准化提升模型精度:标准化/归一化使不同维度的特征在数值上更具比较性,提高分类
- Python和R均方根误差平均绝对误差算法模型
亚图跨际
Python交叉知识R回归模型误差指标归一化均方根误差生态状态指标神经网络成本误差气体排放气候模型多项式拟合
要点回归模型误差评估指标归一化均方根误差生态状态指标神经网络成本误差计算气体排放气候算法模型Python误差指标均方根误差和平均绝对误差均方根偏差或均方根误差是两个密切相关且经常使用的度量值之一,用于衡量真实值或预测值与观测值或估计值之间的差异。估计器θ^\hat{\theta}θ^相对于估计参数θ\thetaθ的RMSD定义为均方误差的平方根:RMSD(θ^)=MSE(θ^)=E((θ^−θ
- python图像处理的图像几何变换
yava_free
图像处理python计算机视觉
一.图像几何变换图像几何变换不改变图像的像素值,在图像平面上进行像素变换。适当的几何变换可以最大程度地消除由于成像角度、透视关系乃至镜头自身原因所造成的几何失真所产生的负面影响。几何变换常常作为图像处理应用的预处理步骤,是图像归一化的核心工作之一[1]。一个几何变换需要两部分运算:空间变换:包括平移、缩放、旋转和正平行投影等,需要用它来表示输出图像与输入图像之间的像素映射关系。灰度插值算法:按照这
- 数学基础 -- 线性代数之格拉姆-施密特正交化
sz66cm
线性代数机器学习人工智能
格拉姆-施密特正交化格拉姆-施密特正交化(Gram-SchmidtOrthogonalization)是一种将一组线性无关的向量转换为一组两两正交向量的算法。通过该过程,我们能够从原始向量组中构造正交基,并且可以选择归一化使得向量组成为标准正交基。算法步骤假设我们有一组线性无关的向量{v1,v2,…,vn}\{v_1,v_2,\dots,v_n\}{v1,v2,…,vn},其目标是将这些向量正交化
- Java在智能数据挖掘系统的应用
lizi88888
java数据挖掘开发语言
智能数据挖掘系统是利用机器学习、统计分析等技术从大量数据中自动或半自动地发现模式和知识的系统。Java作为一种流行的编程语言,因其强大的性能和丰富的生态系统,在智能数据挖掘领域的应用非常广泛。本文将探讨Java在智能数据挖掘系统中的应用,并提供示例代码。智能数据挖掘系统概述智能数据挖掘系统通常具备以下功能:数据预处理:包括数据清洗、归一化、特征选择等。模式识别:识别数据中的模式,如分类、聚类、关联
- 深度学习速通系列:归一化和批量归一化
Ven%
深度学习速通系列自然语言处理人工智能深度学习python机器学习
在深度学习中,归一化和批量归一化是两种常用的技术,它们有助于提高模型的训练效率和性能。下面详细解释这两种技术:归一化(Normalization)归一化是指将数据的数值范围调整到一个特定的区间,通常是[0,1]或者[-1,1],或者使其具有零均值和单位方差。这样做的目的是减少不同特征之间的数值范围差异,使得模型训练更加稳定和高效。常见的归一化方法包括:最小-最大归一化(Min-MaxScaling
- 2025秋招计算机视觉面试题(十一) - 为什么输入网络前要对图像做归一化
微凉的衣柜
计算机视觉人工智能语言模型机器学习
问题在将图像输入到深度学习网络之前,一般先对图像进行预处理,即图像归一化,为什么需要这么做呢?问题背景在面试的时候,面试官先问的问题是“机器学习中为什么要做特征归一化”,我的回答是“特征归一化可以消除特征之间量纲不同的影响,不然分析出来的结果显然会倾向于数值差别比较大的特征,另外从梯度下降的角度理解,数据归一化后,最优解的寻优过程明显会变得平缓,更容易正确的收敛到最优解”。接着面试官又问“图像的像
- 识别实验笔记和经验总结
Wils0nEdwards
笔记
1.跑对比实验之前,首先保证对比的公平性和可靠性!在进行图像分类模型对比实验时,为了确保对比的公平性和可靠性,以下几个因素需要重点考虑:数据集的一致性:数据集分割:确保训练集、验证集和测试集的划分是一致的。各模型使用相同的训练数据和测试数据。数据集大小:确保数据集的样本数量充足且具有代表性,避免数据集过小导致结果不具备普遍性。数据预处理:图像预处理方法:所有模型使用相同的预处理方法(如归一化、裁剪
- 深度学习(二)
小泽爱刷题
深度学习人工智能
CuDNN(CUDADeepNeuralNetworklibrary)是NVIDIA为加速深度学习计算而开发的高性能GPU加速库,专门优化了深度神经网络(DNN)的常见操作,如卷积、池化、归一化和激活函数等。CuDNN的主要作用是通过利用GPU的并行计算能力,提高深度学习模型在GPU上的运行效率。CuDNN的作用加速卷积操作:卷积操作是深度学习中特别是在卷积神经网络(CNN)中最重要且最计算密集的
- Lucece评分公式OKapi BM25原理解析(中)
双人余_先生
背景:延续上篇写了TF/IDF的公式解析,本篇为BM25解析简单介绍。BM25起源于概率相关性模型,而不是矢量空间模型,但是该算法与Lucene的实际评分功能有很多共同点。两者都使用Term词频率,逆文档频率和字段长度归一化,但是每个因素的定义都略有不同。与其详细解释BM25公式,不如将重点放在BM25提供的实际优势上。BM25是一个词袋检索功能,它基于每个文档中出现的查询词对一组文档进行排名,而
- 用MATLAB 画一个64QAM的星座图
nb_lte_5G
matlab算法开发语言
由于QAM采用幅度和相位二维调制,其频谱效率大大提高,而且不同点的欧式距离也要大于调幅AM调制方式,QAM也是LTE和5GNR首选的调制方式,本期教大家画一个64QAM的星座图。如下:首先产生一个64QAM的调制数据,幅度归一化SymbolAlphabet=[complex(3,3)complex(3,1)complex(1,3)complex(1,1)complex(3,5)complex(3,
- 机器学习小组第三周:简单的数据预处理和特征工程
-Helslie
机器学习机器学习
学习目标●无量纲化:最值归一化、均值方差归一化及sklearn中的Scaler●缺失值处理●处理分类型特征:编码与哑变量●处理连续型特征:二值化与分段学习资料首先,参考:《机器学习的敲门砖:归一化与KD树》及《特征工程系列:特征预处理(上)》中相关部分。其次,其他知识点可参考推荐博文:sklearn中的数据预处理和特征工程。20200311数据归一化在量纲不同的情况下,对于部分算法不能反映样本中每
- matlab图像归一化方法
有梦想的炸豆皮
matlabmatlab
B为二维矩阵,大小为16*16一、max-min归一化:Bmax=max(max(B));Bmin=min(min(B));B=(B-Bmin)/(Bmax-Bmin);二、B=B/255B=B/65535三、B=im2double(B)%把图像转换成double精度类型(0~1)
- 相机坐标系转换世界坐标系,zed&imu&depth
Diros1g
数码相机计算机视觉人工智能
1.问题背景相机的安装的是带一定的倾角,而且车辆是行驶在非铺装路面,车辆是会倾斜的。1.1根据内参消除畸变,修正焦点转换关系焦距(fx,fy):焦距参数表示成像平面与相机光心之间的距离,它们决定了成像的大小。在数学上,fx和fy是归一化焦距,它们与相机的实际焦距f以及像素尺寸dx和dy(单位通常为毫米/像素)有关,具体关系为fx=f*dx,fy=f*dy。焦距参数影响成像的视角和物体在图像中的大小
- PyTorch 基础学习(14)- 归一化
花千树-010
PyTorchpytorch学习人工智能
系列文章:《PyTorch基础学习》文章索引概述归一化是数据预处理中的重要步骤之一,它可以将数据调整到特定的范围或分布,有助于加速训练并提高模型的性能。在机器学习中,不同的归一化方法适用于不同的场景。本文将详细介绍scikit-learn中的常见归一化方法及其应用。1.Min-Max归一化MinMaxScalerMin-Max归一化将数据缩放到指定范围,通常是[0,1]。这种方法保留了数据的相对关
- YOLOv10改进 | 独家创新- 注意力篇 | YOLOv10引入结合EMAttention和ParNetAttention形成全新的EPA注意力机制和C2f_EPA(全网独家创新)
小李学AI
YOLOv10有效涨点专栏YOLO深度学习计算机视觉人工智能目标检测机器学习神经网络
1.EPAAttention介绍EPAAttention注意力机制综合了EMAttention和ParNetAttention的优势,能够更有效地提取图像特征。(1).综合性与多样性EPAAttention结合了两种不同的注意力机制,充分利用了EMAttention的分组归一化和特征增强能力,以及ParNetAttention的空间注意力和全局特征提取能力。通过这种多样化的组合,EPAAttent
- 【KELM回归预测】基于麻雀算法优化核极限学习SSA-KELM-Adaboost实现风电回归预测附matlab代码
天天酷科研
粉丝福利算法回归学习SSA-KELM-Ada
以下是使用麻雀算法优化核极限学习机(SSA-KELM)和Adaboost算法实现风电回归预测的MATLAB代码示例:matlab复制%导入风电数据load(‘wind_data.mat’);%假设数据存储在wind_data.mat文件中X=wind_data(:,1:end-1);%输入特征Y=wind_data(:,end);%输出标签%数据归一化X=normalize(X,‘range’);
- 第七届MathorCup高校数学建模挑战赛-A题:基于改进的神经网络和混沌时间序列预测控制高炉炼铁过程
格图素书
大数据竞赛赛题解析数学建模神经网络人工智能
目录摘要一.问题重述二.模型假设三.符号说明四.问题分析五.数据预处理5.1异常值剔除5.2归一化处理5.3预处理后的数据六.问题一模型的建立与求解6.1BP神经网络预测模型6.1.1输入层和输出层6.1.2训练集和验证集6.1.3三层BP神经网络结构6.1.4BP神经网络的参数6.1.6相关性分析6.2小波神经网络预测模型6.2.1小波神经网络的结构6.2.2小波神经网络的基函数6.2.3小波神
- python库——sklearn的关键组件和参数设置
零 度°
pythonpythonsklearn
文章目录模型构建线性回归逻辑回归决策树分类器随机森林支持向量机K-近邻模型评估交叉验证性能指标特征工程主成分分析标准化和归一化scikit-learn,简称sklearn,是Python中一个广泛使用的机器学习库,它建立在NumPy、SciPy和Matplotlib这些科学计算库之上。sklearn提供了简单而有效的工具来进行数据挖掘和数据分析。我们将介绍sklearn中一些关键组件的参数设置。模
- C++ 多路音频pcm混音算法
独行者717
音视频pcm
1、均值化混音算法不适合商用,声音的损失比较大,不建议用,建议用第二种声音混音shortremix(shortpcm1,shortpcm2){intvalue=pcm1+pcm2;return(short)(value/2)}2、归一化混音算法输入数据为48Khz-2-16bit音频数据方法:为避免发生溢出,使用一个可变的衰减因子对语音进行衰减。这个衰减因子也就代表语音的权重,衰减因子随着音频数据
- [转载] Python 快速入门实战教程
ey_snail
参考链接:Python|如何以及在哪里应用特征缩放/归一化课程介绍2017年末,Python在国务院《新一代人工智能发展规划的通知》中被列入教学大纲,一时风头无两。Python因其在人工智能领域的先天优势,深受欢迎,不难预见,它在未来将大有可为。两年前,因项目需要,作者首次接触Python,从此便一发不可收,基于Python完成了多个项目的开发。一路走来,深感书本与实践脱离之痛,市面上种类繁多的编
- VIO第3讲:基于优化的IMU与视觉信息融合之视觉残差雅可比推导
兔子不吃草~
从零开始手写VIO视觉重投影残差与雅可比推导从0手写vio
VIO第3讲:基于优化的IMU与视觉信息融合之视觉残差函数构建文章目录VIO第3讲:基于优化的IMU与视觉信息融合之视觉残差函数构建3视觉重投影残差的Jacobian3.1视觉重投影残差①估计值(预测值)推导引出因子图-优化变量简化形式②观测值3.2重投影残差雅可比J①残差对归一化坐标点fcj{\mathbf{f}_{c_j}}fcj导数②归一化坐标点fcj{\mathbf{f}_{c_j}}fc
- 【华为OD机试题】寻找最优的路测线路 Java代码实现
一般路过糸.
华为odjava开发语言动态规划
题目描述评估一个网络的信号质量,其中一个做法是将网络划分为栅格,然后对每个栅格的信号质量计算。路测的时候,希望选择一条信号最好的路线(彼此相连的栅格集合)进行演示。现给出R行C列的整数数组Cov。每个单元格的数值S即为该栅格的信号质量(已归一化,无单位,值越大信号越好)。要求从[0,0]到[R-1,C-1]。设计一条最优路测路线。返回该路线得分规则:1.路测路线可以上下左右四个方向,不能对角2.路
- 09基于粒子群优化BP神经网络数据回归预测算法PSO-BP【附Matlab源码】只讲代码不讲原理
机器不会学习CSJ
数据回归专栏算法神经网络回归机器学习matlab
文章目录一、粒子群优化算法二、BP神经网络核心代码三、完整过程1、读取数据2、划分数据3、数据归一化4、计算优化节点数量5、粒子群优化参数初始化6、提取最优初始权值和阈值通过粒子群优化的最佳权重矩阵7、训练网络和预测数据结合前面BP设置网络参数代码8、绘图和计算评价指标三、实验结果四、获取完整代码和数据一、粒子群优化算法核心计算公式%%参数初始化c1=4.494;%学习因子c2=4.494;%学习
- GEE案例——如何sentinel-2影像利用NDWI归一化水体指数进行长时序水域分析(2015-2023年滇池为例)
此星光明
GEE案例分析前端服务器时序sentinel影像JavaScript面积
简介Sentinel-2是一颗遥感卫星,其提供的高分辨率数据可以广泛应用于环境监测、土地利用和水资源管理等领域。其中,利用归一化水体指数(NormalizedDifferenceWaterIndex,NDWI)来进行长时序水域分析是一种常见的方法。本文将介绍NDWI的定义和计算方法,并结合Sentinel-2影像的使用,详细说明如何进行长时序水域分析。首先,我们来看一下NDWI的定义和计算方法。N
- 【无标题】
Komorebi_9999
知识图谱问答系统自然语言处理
要构建一个基于知识图谱的问答系统,你需要进行以下工作:知识图谱构建:数据采集:从各种来源(如公开数据库、API、网页等)收集与你的领域相关的数据。数据清洗和预处理:清洗数据,去除重复、错误或不相关的信息,对数据进行归一化、标准化处理。实体识别和关系抽取:从数据中识别出实体(如人、地点、概念等)和它们之间的关系。构建图谱:将实体和关系组织成图谱结构,通常使用图数据库来存储。自然语言处理(NLP):分
- 【无标题】Matlab 之axes函数——创建笛卡尔坐标区
weixin_44202064
matlab开发语言
**基本用法:**axes在当前图窗中创建默认的笛卡尔坐标区,并将其设置为当前坐标区。应用场景1:在图窗中放置两个Axes对象,并为每个对象添加一个绘图。要求1:指定第一个Axes对象的位置,使其左下角位于点(0.10.1)处,宽度和高度均为0.7。指定第二个Axes对象的位置,使其左下角位于点(0.650.65)处,宽度和高度均为0.28。默认情况下,所有值为基于图窗的归一化值。将这两个Axes
- 车牌识别-基于模板匹配
勇敢歪歪
matlab开发语言
基于模板匹配的车牌识别一、设计思路二、功能模块1、GUI界面创建2、图片选择3、车牌粗定位4、灰度化5、倾斜矫正6、二值化和第一次形态学处理7、精确定位8、第二次形态学处理9、字符分割10、归一化切割后的字符以及模板11、字符匹配12、语音播报13、退出系统和关于按钮三、总的操作图一、设计思路车牌识别程序的设计主要基于车牌的固有特点,这些特点指导算法的设计。在一个识别系统中首先选择某一个或几个车牌
- 基于PSO优化的GRU多输入时序回归预测(Matlab)粒子群优化门控循环单元神经网络时序回归预测
神经网络与数学建模
机器学习与神经网络gru回归matlab神经网络预测时序粒子群算法
目录一、程序及算法内容介绍:基本内容:亮点与优势:二、实际运行效果:三、部分程序:四、完整代码+数据分享下载:一、程序及算法内容介绍:基本内容:本代码基于Matlab平台编译,将PSO(粒子群算法)与GRU(门控循环单元神经网络)结合,进行多输入数据回归预测输入训练的数据包含8个特征,1个响应值,即通过8个输入值预测1个输出值(多变量回归预测,输入输出个数可自行指定)归一化训练数据,提升网络泛化性
- MIT-BEVFusion系列九--CUDA-BEVFusion部署2 create_core之参数设置
端木的AI探索屋
自动驾驶cudacuda-bevfusionnvidia部署模型算法部署bev
目录加载命令行参数main函数中的create_core图像归一化参数体素化参数稀疏卷积网络参数真实世界几何空间参数(雷达坐标系下体素网格的参数)解码后边界框的参数构建bevfusion::Core存储推理时需要的参数本章开始,我们将一起看CUDA-BEVFusion的代码流程,看看NVIDIA部署方案的思路方法。加载命令行参数将代码debug起来,launch.json中配置好了传入的参数。C+
- HQL之投影查询
归来朝歌
HQLHibernate查询语句投影查询
在HQL查询中,常常面临这样一个场景,对于多表查询,是要将一个表的对象查出来还是要只需要每个表中的几个字段,最后放在一起显示?
针对上面的场景,如果需要将一个对象查出来:
HQL语句写“from 对象”即可
Session session = HibernateUtil.openSession();
- Spring整合redis
bylijinnan
redis
pom.xml
<dependencies>
<!-- Spring Data - Redis Library -->
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-redi
- org.hibernate.NonUniqueResultException: query did not return a unique result: 2
0624chenhong
Hibernate
参考:http://blog.csdn.net/qingfeilee/article/details/7052736
org.hibernate.NonUniqueResultException: query did not return a unique result: 2
在项目中出现了org.hiber
- android动画效果
不懂事的小屁孩
android动画
前几天弄alertdialog和popupwindow的时候,用到了android的动画效果,今天专门研究了一下关于android的动画效果,列出来,方便以后使用。
Android 平台提供了两类动画。 一类是Tween动画,就是对场景里的对象不断的进行图像变化来产生动画效果(旋转、平移、放缩和渐变)。
第二类就是 Frame动画,即顺序的播放事先做好的图像,与gif图片原理类似。
- js delete 删除机理以及它的内存泄露问题的解决方案
换个号韩国红果果
JavaScript
delete删除属性时只是解除了属性与对象的绑定,故当属性值为一个对象时,删除时会造成内存泄露 (其实还未删除)
举例:
var person={name:{firstname:'bob'}}
var p=person.name
delete person.name
p.firstname -->'bob'
// 依然可以访问p.firstname,存在内存泄露
- Oracle将零干预分析加入网络即服务计划
蓝儿唯美
oracle
由Oracle通信技术部门主导的演示项目并没有在本月较早前法国南斯举行的行业集团TM论坛大会中获得嘉奖。但是,Oracle通信官员解雇致力于打造一个支持零干预分配和编制功能的网络即服务(NaaS)平台,帮助企业以更灵活和更适合云的方式实现通信服务提供商(CSP)的连接产品。这个Oracle主导的项目属于TM Forum Live!活动上展示的Catalyst计划的19个项目之一。Catalyst计
- spring学习——springmvc(二)
a-john
springMVC
Spring MVC提供了非常方便的文件上传功能。
1,配置Spring支持文件上传:
DispatcherServlet本身并不知道如何处理multipart的表单数据,需要一个multipart解析器把POST请求的multipart数据中抽取出来,这样DispatcherServlet就能将其传递给我们的控制器了。为了在Spring中注册multipart解析器,需要声明一个实现了Mul
- POJ-2828-Buy Tickets
aijuans
ACM_POJ
POJ-2828-Buy Tickets
http://poj.org/problem?id=2828
线段树,逆序插入
#include<iostream>#include<cstdio>#include<cstring>#include<cstdlib>using namespace std;#define N 200010struct
- Java Ant build.xml详解
asia007
build.xml
1,什么是antant是构建工具2,什么是构建概念到处可查到,形象来说,你要把代码从某个地方拿来,编译,再拷贝到某个地方去等等操作,当然不仅与此,但是主要用来干这个3,ant的好处跨平台 --因为ant是使用java实现的,所以它跨平台使用简单--与ant的兄弟make比起来语法清晰--同样是和make相比功能强大--ant能做的事情很多,可能你用了很久,你仍然不知道它能有
- android按钮监听器的四种技术
百合不是茶
androidxml配置监听器实现接口
android开发中经常会用到各种各样的监听器,android监听器的写法与java又有不同的地方;
1,activity中使用内部类实现接口 ,创建内部类实例 使用add方法 与java类似
创建监听器的实例
myLis lis = new myLis();
使用add方法给按钮添加监听器
- 软件架构师不等同于资深程序员
bijian1013
程序员架构师架构设计
本文的作者Armel Nene是ETAPIX Global公司的首席架构师,他居住在伦敦,他参与过的开源项目包括 Apache Lucene,,Apache Nutch, Liferay 和 Pentaho等。
如今很多的公司
- TeamForge Wiki Syntax & CollabNet User Information Center
sunjing
TeamForgeHow doAttachementAnchorWiki Syntax
the CollabNet user information center http://help.collab.net/
How do I create a new Wiki page?
A CollabNet TeamForge project can have any number of Wiki pages. All Wiki pages are linked, and
- 【Redis四】Redis数据类型
bit1129
redis
概述
Redis是一个高性能的数据结构服务器,称之为数据结构服务器的原因是,它提供了丰富的数据类型以满足不同的应用场景,本文对Redis的数据类型以及对这些类型可能的操作进行总结。
Redis常用的数据类型包括string、set、list、hash以及sorted set.Redis本身是K/V系统,这里的数据类型指的是value的类型,而不是key的类型,key的类型只有一种即string
- SSH2整合-附源码
白糖_
eclipsespringtomcatHibernateGoogle
今天用eclipse终于整合出了struts2+hibernate+spring框架。
我创建的是tomcat项目,需要有tomcat插件。导入项目以后,鼠标右键选择属性,然后再找到“tomcat”项,勾选一下“Is a tomcat project”即可。具体方法见源码里的jsp图片,sql也在源码里。
补充1:项目中部分jar包不是最新版的,可能导
- [转]开源项目代码的学习方法
braveCS
学习方法
转自:
http://blog.sina.com.cn/s/blog_693458530100lk5m.html
http://www.cnblogs.com/west-link/archive/2011/06/07/2074466.html
1)阅读features。以此来搞清楚该项目有哪些特性2)思考。想想如果自己来做有这些features的项目该如何构架3)下载并安装d
- 编程之美-子数组的最大和(二维)
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
import java.util.Random;
public class MaxSubArraySum2 {
/**
* 编程之美 子数组之和的最大值(二维)
*/
private static final int ROW = 5;
private stat
- 读书笔记-3
chengxuyuancsdn
jquery笔记resultMap配置ibatis一对多配置
1、resultMap配置
2、ibatis一对多配置
3、jquery笔记
1、resultMap配置
当<select resultMap="topic_data">
<resultMap id="topic_data">必须一一对应。
(1)<resultMap class="tblTopic&q
- [物理与天文]物理学新进展
comsci
如果我们必须获得某种地球上没有的矿石,才能够进行某些能量输出装置的设计和建造,而要获得这种矿石,又必须首先进行深空探测,而要进行深空探测,又必须获得这种能量输出装置,这个矛盾的循环,会导致地球联盟在与宇宙文明建立关系的时候,陷入困境
怎么办呢?
 
- Oracle 11g新特性:Automatic Diagnostic Repository
daizj
oracleADR
Oracle Database 11g的FDI(Fault Diagnosability Infrastructure)是自动化诊断方面的又一增强。
FDI的一个关键组件是自动诊断库(Automatic Diagnostic Repository-ADR)。
在oracle 11g中,alert文件的信息是以xml的文件格式存在的,另外提供了普通文本格式的alert文件。
这两份log文
- 简单排序:选择排序
dieslrae
选择排序
public void selectSort(int[] array){
int select;
for(int i=0;i<array.length;i++){
select = i;
for(int k=i+1;k<array.leng
- C语言学习六指针的经典程序,互换两个数字
dcj3sjt126com
c
示例程序,swap_1和swap_2都是错误的,推理从1开始推到2,2没完成,推到3就完成了
# include <stdio.h>
void swap_1(int, int);
void swap_2(int *, int *);
void swap_3(int *, int *);
int main(void)
{
int a = 3;
int b =
- php 5.4中php-fpm 的重启、终止操作命令
dcj3sjt126com
PHP
php 5.4中php-fpm 的重启、终止操作命令:
查看php运行目录命令:which php/usr/bin/php
查看php-fpm进程数:ps aux | grep -c php-fpm
查看运行内存/usr/bin/php -i|grep mem
重启php-fpm/etc/init.d/php-fpm restart
在phpinfo()输出内容可以看到php
- 线程同步工具类
shuizhaosi888
同步工具类
同步工具类包括信号量(Semaphore)、栅栏(barrier)、闭锁(CountDownLatch)
闭锁(CountDownLatch)
public class RunMain {
public long timeTasks(int nThreads, final Runnable task) throws InterruptedException {
fin
- bleeding edge是什么意思
haojinghua
DI
不止一次,看到很多讲技术的文章里面出现过这个词语。今天终于弄懂了——通过朋友给的浏览软件,上了wiki。
我再一次感到,没有辞典能像WiKi一样,给出这样体贴人心、一清二楚的解释了。为了表达我对WiKi的喜爱,只好在此一一中英对照,给大家上次课。
In computer science, bleeding edge is a term that
- c中实现utf8和gbk的互转
jimmee
ciconvutf8&gbk编码
#include <iconv.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <string.h>
#include <sys/stat.h>
int code_c
- 大型分布式网站架构设计与实践
lilin530
应用服务器搜索引擎
1.大型网站软件系统的特点?
a.高并发,大流量。
b.高可用。
c.海量数据。
d.用户分布广泛,网络情况复杂。
e.安全环境恶劣。
f.需求快速变更,发布频繁。
g.渐进式发展。
2.大型网站架构演化发展历程?
a.初始阶段的网站架构。
应用程序,数据库,文件等所有的资源都在一台服务器上。
b.应用服务器和数据服务器分离。
c.使用缓存改善网站性能。
d.使用应用
- 在代码中获取Android theme中的attr属性值
OliveExcel
androidtheme
Android的Theme是由各种attr组合而成, 每个attr对应了这个属性的一个引用, 这个引用又可以是各种东西.
在某些情况下, 我们需要获取非自定义的主题下某个属性的内容 (比如拿到系统默认的配色colorAccent), 操作方式举例一则:
int defaultColor = 0xFF000000;
int[] attrsArray = { andorid.r.
- 基于Zookeeper的分布式共享锁
roadrunners
zookeeper分布式共享锁
首先,说说我们的场景,订单服务是做成集群的,当两个以上结点同时收到一个相同订单的创建指令,这时并发就产生了,系统就会重复创建订单。等等......场景。这时,分布式共享锁就闪亮登场了。
共享锁在同一个进程中是很容易实现的,但在跨进程或者在不同Server之间就不好实现了。Zookeeper就很容易实现。具体的实现原理官网和其它网站也有翻译,这里就不在赘述了。
官
- 两个容易被忽略的MySQL知识
tomcat_oracle
mysql
1、varchar(5)可以存储多少个汉字,多少个字母数字? 相信有好多人应该跟我一样,对这个已经很熟悉了,根据经验我们能很快的做出决定,比如说用varchar(200)去存储url等等,但是,即使你用了很多次也很熟悉了,也有可能对上面的问题做出错误的回答。 这个问题我查了好多资料,有的人说是可以存储5个字符,2.5个汉字(每个汉字占用两个字节的话),有的人说这个要区分版本,5.0
- zoj 3827 Information Entropy(水题)
阿尔萨斯
format
题目链接:zoj 3827 Information Entropy
题目大意:三种底,计算和。
解题思路:调用库函数就可以直接算了,不过要注意Pi = 0的时候,不过它题目里居然也讲了。。。limp→0+plogb(p)=0,因为p是logp的高阶。
#include <cstdio>
#include <cstring>
#include <cmath&