- 每天五分钟玩转深度学习PyTorch:模型参数优化器torch.optim
幻风_huanfeng
深度学习框架pytorch深度学习pytorch人工智能神经网络机器学习优化算法
本文重点在机器学习或者深度学习中,我们需要通过修改参数使得损失函数最小化(或最大化),优化算法就是一种调整模型参数更新的策略。在pytorch中定义了优化器optim,我们可以使用它调用封装好的优化算法,然后传递给它神经网络模型参数,就可以对模型进行优化。本文是学习第6步(优化器),参考链接pytorch的学习路线随机梯度下降算法在深度学习和机器学习中,梯度下降算法是最常用的参数更新方法,它的公式
- 数据库服务器运维最佳实践
bigbig猩猩
数据库运维服务器
数据库服务器运维是确保数据库系统高效、稳定和安全运行的关键环节。随着信息技术的不断发展,数据库系统的规模和复杂性不断增加,对运维工作的要求也越来越高。以下将从硬件选择、操作系统和文件系统优化、数据库版本选择、参数优化、数据备份与恢复、性能监控与调优、安全管理以及高可用性和灾难恢复等方面详细介绍数据库服务器运维的最佳实践。一、硬件选择1.CPU选择多核高主频的处理器是保障数据库性能的基础。数据库服务
- Linux系统性能调优技巧
A_aspectJ项目开发
JavaWeb技术网络工具linux运维服务器
前言Linux系统因其稳定性和灵活性广泛应用于服务器、开发环境和企业级应用中。然而,为了确保最佳性能,尤其是在负载较高的情况下,系统调优变得至关重要。Linux系统性能调优技巧主要包括硬件优化、软件优化、内核参数优化、进程管理优化等方面。一、硬件优化:内存优化:增加物理内存是最直接的方法,同时可以通过优化内存使用策略来减少内存的浪费,使用内存管理工具如free、vmstat等来监控和调整内存
- 阿里云Centos服务器调优必看
leafseelight
服务器阿里云centos服务器参数调优
文章目录系统优化1操作系统参数优化1.1内存分配策略1.2系统全局最大文件句柄1.3配置nr_open1.4临时会话最大文件句柄1.5设置服务的最大文件句柄1.6设置用户的最大文件句柄、最大文件句柄数2Tcp网络优化2.1并发连接优化2.2端口使用范围3这里贴sysctl的增加的配置本文主要用于,MQTT服务系统参数调优系统优化1操作系统参数优化1.1内存分配策略必须修改编辑:vim/etc/sy
- 深度学习框架相关-Python模块的介绍和使用---torch
sccum
Python常用库的介绍和使用深度学习python人工智能
文章摘要:'''1.torch模块,是一个开源的深度学习框架,主要用于构建和训练神经网络。PyTorch的设计目标是提供灵活且高效的工具集,用于深度学习和科学计算;2.下面主要介绍torch模块的五个功能:数据加载和处理,GPU加速,建立网络模型,模型的保存和加载,梯度更新和参数优化;上面功能主要用到的子模块如下:torch.utils.data、torch.cuda、torch.nn、torch
- 遥感之智能优化算法大纲介绍
遥感-GIS
遥感之智能优化算法图像处理arcgis启发式算法
介绍近年来在遥感及人工智能领域研究比较火热的智能优化算法,其中被广泛使用的比如粒子群算法和遗传算法等,在遥感领域,比如高光谱特征选择,机器学习超参数优化等方向有众多的应用,除了提到了两个算法之外,还有众多其他算法,本专栏基于《智能优化算法与涌现计算》及其相关资料,对智能优化算法做些详细的整理和总结,以期给遥感或其他领域提供有价值的参考。书籍大纲为:第一篇仿人智能优化算法描述模拟人脑思维、人体系统、
- 回归预测|基于卷积神经网络-鲸鱼优化-最小二乘支持向量机的数据回归预测Matlab程序 CNN-WOA-LSSVM
机器不会学习CL
回归预测智能优化算法回归cnn支持向量机
回归预测|基于卷积神经网络-鲸鱼优化-最小二乘支持向量机的数据回归预测Matlab程序CNN-WOA-LSSVM文章目录一、基本原理1.数据预处理2.特征提取(CNN)3.参数优化(WOA)4.模型训练(LSSVM)5.模型评估和优化6.预测总结二、实验结果三、核心代码四、代码获取五、总结回归预测|基于卷积神经网络-鲸鱼优化-最小二乘支持向量机的数据回归预测Matlab程序CNN-WOA-LSSV
- MYSQL优化相关
peanut___
mysql优化3大方向:优化mysql所在服务器内核(运维完成)对mysql配置参数进行优化(my.cnf),此优化需要进行压力测试进行参数调整建表时的优化对sql语句的优化一、mysql参数优化mysql默认最大连接数为100,查看命令:showvariableslike'max_connections';(该机器最大连接数)设置最大连接数setglobalmax_connections=100
- mysql 运行参数优化
qq_21305943
mysql数据库
mysql运行参数优化InnoDB设置1.innodb_buffer_pool_size——默认值为128M.这是最主要的优化选项,因为它指定InnoDB使用多少内存来加载数据和索引(data+indexes).针对专用MySQL服务器,建议指定为物理内存的50-80%这个范围.例如,拥有64GB物理内存的机器,缓存池应该设置为50GB左右.如果将该值设置得更大可能会存在风险,比如没有足够的空闲内
- 【解决(几乎)任何机器学习问题】:超参数优化篇(超详细)
X.AI666
解决(几乎)任何机器学习问题机器学习人工智能
这篇文章相当长,您可以添加至收藏夹,以便在后续有空时候悠闲地阅读。有了优秀的模型,就有了优化超参数以获得最佳得分模型的难题。那么,什么是超参数优化呢?假设您的机器学习项⽬有⼀个简单的流程。有⼀个数据集,你直接应⽤⼀个模型,然后得到结果。模型在这⾥的参数被称为超参数,即控制模型训练/拟合过程的参数。如果我们⽤SGD训练线性回归,模型的参数是斜率和偏差,超参数是学习率。你会发现我在本章和本书中交替使⽤
- 机器学习网格搜索超参数优化实战(随机森林) ##4
恒c
机器学习随机森林人工智能
文章目录基于Kaggle电信用户流失案例数据(可在官网进行下载)数据预处理模块时序特征衍生第一轮网格搜索第二轮搜索第三轮搜索第四轮搜索第五轮搜索基于Kaggle电信用户流失案例数据(可在官网进行下载)导入库#基础数据科学运算库importnumpyasnpimportpandasaspd#可视化库importseabornassnsimportmatplotlib.pyplotasplt#时间模块
- optuna,一个好用的Python机器学习自动化超参数优化库
牵着猫散步的鼠鼠
python开发语言
️个人主页:鼠鼠我捏,要死了捏的主页️付费专栏:Python专栏️个人学习笔记,若有缺误,欢迎评论区指正前言超参数优化是机器学习中的重要问题,它涉及在训练模型时选择最优的超参数组合,以提高模型的性能和泛化能力。Optuna是一个用于自动化超参数优化的库,它提供了有效的参数搜索算法和方便的结果可视化工具。目录前言
- GEE:CART(Classification and Regression Trees)回归教程(样本点、特征添加、训练、精度、参数优化)
_养乐多_
GEE遥感图像处理教程回归GEEjavascript云计算遥感图像处理
作者:CSDN@_养乐多_对于分类问题,这个输出通常是一个类别标签,而对于回归问题,输出通常是一个连续的数值。回归可以应用于多种场景,包括预测土壤PH值、土壤有机碳、土壤水分、碳密度、生物量、气温、海冰厚度、不透水面积百分比、植被覆盖度等。本文将介绍在GoogleEarthEngine(GEE)平台上进行CART(ClassificationandRegressionTrees)回归的方法和代码,
- GEE:最小距离(minimumDistance)回归教程(样本点、特征添加、训练、精度、参数优化)
_养乐多_
GEE遥感图像处理教程回归GEEjavascript云计算机器学习
作者:CSDN@_养乐多_对于分类问题,这个输出通常是一个类别标签,而对于回归问题,输出通常是一个连续的数值。回归可以应用于多种场景,包括预测土壤PH值、土壤有机碳、土壤水分、碳密度、生物量、气温、海冰厚度、不透水面积百分比、植被覆盖度等。本文将介绍在GoogleEarthEngine(GEE)平台上进行最小距离回归的方法和代码,其中包括样本点格式介绍,加入特征变量(各种指数、纹理特征、时间序列特
- GEE:梯度提升树(Gradient Boosting Tree)回归教程(样本点、特征添加、训练、精度、参数优化)
_养乐多_
GEE遥感图像处理教程boosting回归GEE云计算javascript遥感图像处理
作者:CSDN@_养乐多_对于分类问题,这个输出通常是一个类别标签,而对于回归问题,输出通常是一个连续的数值。回归可以应用于多种场景,包括预测土壤PH值、土壤有机碳、土壤水分、碳密度、生物量、气温、海冰厚度、不透水面积百分比、植被覆盖度等。本文将介绍在GoogleEarthEngine(GEE)平台上进行梯度提升树(GradientBoostingTree)回归的方法和代码,其中包括样本点格式介绍
- 9、神经网络 三:学习与评价
qxdx.org
计算机视觉梯度检查清醒检查婴儿学习过程超参数优化二阶方法
目录9.1梯度检验9.2清醒检查9.3照看学习过程9.3.1损失函数9.3.2训练/评估精度9.3.3权重:更新率9.3.4每一层的激活/梯度分布9.4.5可视化9.4参数更新9.4.1一阶(SGD),动量,内斯特罗夫动量9.4.2学习速率的退火9.4.3二阶方法9.4.4每个参数自适应学习率(Adagrad,RMSProp)9.5超参数优化9.6评价9.7模型集成9.8总结9.9参考文献在前面的
- Ceph入门到精通-sysctl参数优化
Ceph是一种开源的、高度可扩展的分布式存储系统,它可以在商业硬件上提供对象、块和文件系统的存储。在Ceph的部署和维护过程中,我们可能需要对Linux内核参数进行一些优化,以提高Ceph的性能和稳定性。这个过程通常是通过sysctl命令来完成的。sysctl是Linux系统中用于读取和修改内核参数的命令行工具。这些参数保存在/proc/sys/目录下,sysctl可以通过读取和写入这些文件来获取
- Ceph入门到精通-sysctl参数优化
Ceph是一种开源的、高度可扩展的分布式存储系统,它可以在商业硬件上提供对象、块和文件系统的存储。在Ceph的部署和维护过程中,我们可能需要对Linux内核参数进行一些优化,以提高Ceph的性能和稳定性。这个过程通常是通过sysctl命令来完成的。sysctl是Linux系统中用于读取和修改内核参数的命令行工具。这些参数保存在/proc/sys/目录下,sysctl可以通过读取和写入这些文件来获取
- 第十七篇【传奇开心果系列】Python的OpenCV库技术点案例示例:自适应阈值二值化处理图像提取文字
传奇开心果编程
Python库OpenCV技术点案例示例短博文pythonopencv计算机视觉人工智能图像处理
传奇开心果短博文系列系列短博文目录Python的OpenCV库技术点案例示例系列短博文目录前言一、自适应阈值二值化处理图像提取文字轮廓的初步示例代码:二、扩展思路介绍三、调整自适应阈值二值化的参数示例代码四、对二值化图像进行形态学操作示例代码五、使用轮廓特征进行筛选示例代码六、边缘检测算法示例代码七、使用图像分割算法将图像分割为文字和背景区域示例代码八、调整参数优化文字轮廓示例代码九、应用形态学操
- apache服务器部署优化及故障处理详细教程 小小子
weixin_33895604
1.LinuxApacheweb服务器学习要点:1.apache用途,工作模式,httpd.conf的配置重要参数2.虚拟主机3.工作模式的参数优化1.1.Apache概述:Apache是世界使用排名第一的Web服务器软件。它可以运行在几乎所有广泛使用的计算机平台上,由于其跨平台和安全性被广泛使用,是最流行的Web服务器端软件之一。它快速、可靠并且可通过简单的API扩充,将Perl/Python等
- 学习笔记——ENM模拟
星石传说
生物技术笔记学习笔记
学习笔记——ENM模拟文章目录前言一、文献一1.材料与方法1.1.大致概念1.2.生态模型的构建1.2.1.数据来源:1.2.2.数据处理:1.2.3.模型参数优化:1.3.适生情况预测1.3.1.预测模型构建1.3.2.适生区划分1.4.模型的评估与验证2.结果与分析2.1.预测模型的构建2.2.潜在的适生分布预测2.3.生态模型的评估与验证前言学习文献里的方法,初步了解一下什么是ENM模拟文献
- 深度学习技巧应用36-深度学习模型训练中的超参数调优指南大全,总结相关问题与答案
微学AI
深度学习技巧应用深度学习人工智能超参数调优模型
大家好,我是微学AI,今天给大家介绍一下深度学习技巧应用36-深度学习模型训练中的超参数调优指南大全,总结相关问题与答案。深度学习模型训练中的调优指南大全概括了数据预处理、模型架构设计、超参数优化、正则化策略和训练技巧等多个关键方面,以提升模型性能和泛化能力。文章目录前言一、选择模型架构二、优化器的选择Adam优化器说明Adam优化器的数学公式Adam优化器的4个超参数微调三、batchsize的
- 掌握Pandas数据转换利器深入解析pd.to_numeric函数与实战技巧【第63篇—python:Pandas数据】
一见已难忘的申公豹
pandaspython开发语言pd.to_numeric数据处理
文章目录引言pd.to_numeric函数简介参数详解实战案例进阶应用:处理缺失值与异常值1.处理缺失值2.处理异常值高效利用downcast参数优化内存占用优化性能:使用apply函数批量处理数据实战案例:处理时间序列数据处理多列数据:结合apply函数总结引言在数据处理和分析的过程中,经常会遇到需要将数据类型进行转换的情况。Pandas提供了丰富的函数来满足这个需求,其中pd.to_numer
- Python 机器学习 交叉验证、网格搜索
weixin_42098295
python机器学习开发语言
Python的机器学习项目中,交叉验证(Cross-Validation)和网格搜索(GridSearch)是两种重要的技术,通常用于模型选择和超参数优化。交叉验证和网格搜索也是机器学习中常用的两种技术,可以有效地提高模型的性能。1、交叉验证(Cross-Validation)交叉验证是一种评估模型泛化性能的方法。它涉及将数据集分成几个部分,通常是“折叠”(folds),然后将模型在一个折叠上进行
- 【机器学习300问】22、什么是超参数优化?常见超参数优化方法有哪些?
小oo呆
【机器学习】机器学习人工智能
在之前的文章中,我主要介绍了学习率η和正则化强度λ这两个超参数。这篇文章中我就主要拿这两个超参数来进行举例说明。如果想在开始阅读本文之前了解这两个超参数的有关内容可以参考我之前的文章,文章链接为你放在了这里:【机器学习300问】10、学习率设置过大或过小对训练有何影响?http://t.csdnimg.cn/ZvFiw【机器学习300问】18、正则化是如何解决过拟合问题的?http://t.csd
- 机器学习超参数优化算法(贝叶斯优化)
恒c
机器学习算法人工智能随机森林
文章目录贝叶斯优化算法原理贝叶斯优化的实现(三种方法均有代码实现)基于Bayes_opt实现GP优化基于HyperOpt实现TPE优化基于Optuna实现多种贝叶斯优化贝叶斯优化算法原理在贝叶斯优化的数学过程当中,我们主要执行以下几个步骤:1定义需要估计的f(x)f(x)f(x)以及xxx的定义域2取出有限的n个xxx上的值,求解出这些xxx对应的f(x)f(x)f(x)(求解观测值)3根据有限的
- Spark的JVM调优
王一1995
jvmspark
目录导致gc因素内存不充足的时候,出现的问题降低cache操作的内存占比调节executor堆外内存与连接等待时长调节executor堆外内存调节连接等待时长SparkJVM参数优化设置Sparkstreaming参数优化设置Spark反压参数设置导致gc因素堆内存存放我们创建的一些对象,有老年代和年轻代。理想情况下,老年代都是放一些生命周期很长的对象,数量应该是很少的,比如数据库连接池。我们在s
- MySQL调优
whiteBrocade
MySQLmysql数据库性能优化
参考博客MySQL调优篇:单机数据库如何在高并发场景下健步如飞?优化类型大概分类三个类型结构/架构优化:读写分离、集群热备、分布式架构、引入缓存/消息/搜索中间件、分库分表、中台架构(大数据中台、基础设施中台)等配置/参数优化:调整应用系统中各层面的配置文件、启动参数达到优化性能的目标代码/操作优化:从代码、操作方面进行调节,达到效率更高的初衷优化思想单个节点调优核心思想CPU,内存,磁盘三者任何
- AI预测-注意力机制/多头注意力机制及其tensorflow实现
写代码的中青年
AI预测人工智能tensorflowpython深度学习keras
AI预测相关目录AI预测流程,包括ETL、算法策略、算法模型、模型评估、可视化等相关内容最好有基础的python算法预测经验EEMD策略及踩坑VMD-CNN-LSTM时序预测对双向LSTM等模型添加自注意力机制K折叠交叉验证optuna超参数优化框架多任务学习-模型融合策略Transformer模型及Paddle实现迁移学习在预测任务上的tensoflow2.0实现holt提取时序序列特征TCN时
- AI预测-多任务学习-模型融合策略
写代码的中青年
AI预测人工智能学习python神经网络深度学习
AI预测相关目录AI预测流程,包括ETL、算法策略、算法模型、模型评估、可视化等相关内容最好有基础的python算法预测经验EEMD策略及踩坑VMD-CNN-LSTM时序预测对双向LSTM等模型添加自注意力机制K折叠交叉验证optuna超参数优化框架多任务学习-模型融合测略文章目录AI预测相关目录一、模型融合二、模型介绍三、代码示例总结一、模型融合模型融合是自创概念,实际上是对多任务学习一直情况的
- 继之前的线程循环加到窗口中运行
3213213333332132
javathreadJFrameJPanel
之前写了有关java线程的循环执行和结束,因为想制作成exe文件,想把执行的效果加到窗口上,所以就结合了JFrame和JPanel写了这个程序,这里直接贴出代码,在窗口上运行的效果下面有附图。
package thread;
import java.awt.Graphics;
import java.text.SimpleDateFormat;
import java.util
- linux 常用命令
BlueSkator
linux命令
1.grep
相信这个命令可以说是大家最常用的命令之一了。尤其是查询生产环境的日志,这个命令绝对是必不可少的。
但之前总是习惯于使用 (grep -n 关键字 文件名 )查出关键字以及该关键字所在的行数,然后再用 (sed -n '100,200p' 文件名),去查出该关键字之后的日志内容。
但其实还有更简便的办法,就是用(grep -B n、-A n、-C n 关键
- php heredoc原文档和nowdoc语法
dcj3sjt126com
PHPheredocnowdoc
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Current To-Do List</title>
</head>
<body>
<?
- overflow的属性
周华华
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- 《我所了解的Java》——总体目录
g21121
java
准备用一年左右时间写一个系列的文章《我所了解的Java》,目录及内容会不断完善及调整。
在编写相关内容时难免出现笔误、代码无法执行、名词理解错误等,请大家及时指出,我会第一时间更正。
&n
- [简单]docx4j常用方法小结
53873039oycg
docx
本代码基于docx4j-3.2.0,在office word 2007上测试通过。代码如下:
import java.io.File;
import java.io.FileInputStream;
import ja
- Spring配置学习
云端月影
spring配置
首先来看一个标准的Spring配置文件 applicationContext.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi=&q
- Java新手入门的30个基本概念三
aijuans
java新手java 入门
17.Java中的每一个类都是从Object类扩展而来的。 18.object类中的equal和toString方法。 equal用于测试一个对象是否同另一个对象相等。 toString返回一个代表该对象的字符串,几乎每一个类都会重载该方法,以便返回当前状态的正确表示.(toString 方法是一个很重要的方法) 19.通用编程:任何类类型的所有值都可以同object类性的变量来代替。
- 《2008 IBM Rational 软件开发高峰论坛会议》小记
antonyup_2006
软件测试敏捷开发项目管理IBM活动
我一直想写些总结,用于交流和备忘,然都没提笔,今以一篇参加活动的感受小记开个头,呵呵!
其实参加《2008 IBM Rational 软件开发高峰论坛会议》是9月4号,那天刚好调休.但接着项目颇为忙,所以今天在中秋佳节的假期里整理了下.
参加这次活动是一个朋友给的一个邀请书,才知道有这样的一个活动,虽然现在项目暂时没用到IBM的解决方案,但觉的参与这样一个活动可以拓宽下视野和相关知识.
- PL/SQL的过程编程,异常,声明变量,PL/SQL块
百合不是茶
PL/SQL的过程编程异常PL/SQL块声明变量
PL/SQL;
过程;
符号;
变量;
PL/SQL块;
输出;
异常;
PL/SQL 是过程语言(Procedural Language)与结构化查询语言(SQL)结合而成的编程语言PL/SQL 是对 SQL 的扩展,sql的执行时每次都要写操作
- Mockito(三)--完整功能介绍
bijian1013
持续集成mockito单元测试
mockito官网:http://code.google.com/p/mockito/,打开documentation可以看到官方最新的文档资料。
一.使用mockito验证行为
//首先要import Mockito
import static org.mockito.Mockito.*;
//mo
- 精通Oracle10编程SQL(8)使用复合数据类型
bijian1013
oracle数据库plsql
/*
*使用复合数据类型
*/
--PL/SQL记录
--定义PL/SQL记录
--自定义PL/SQL记录
DECLARE
TYPE emp_record_type IS RECORD(
name emp.ename%TYPE,
salary emp.sal%TYPE,
dno emp.deptno%TYPE
);
emp_
- 【Linux常用命令一】grep命令
bit1129
Linux常用命令
grep命令格式
grep [option] pattern [file-list]
grep命令用于在指定的文件(一个或者多个,file-list)中查找包含模式串(pattern)的行,[option]用于控制grep命令的查找方式。
pattern可以是普通字符串,也可以是正则表达式,当查找的字符串包含正则表达式字符或者特
- mybatis3入门学习笔记
白糖_
sqlibatisqqjdbc配置管理
MyBatis 的前身就是iBatis,是一个数据持久层(ORM)框架。 MyBatis 是支持普通 SQL 查询,存储过程和高级映射的优秀持久层框架。MyBatis对JDBC进行了一次很浅的封装。
以前也学过iBatis,因为MyBatis是iBatis的升级版本,最初以为改动应该不大,实际结果是MyBatis对配置文件进行了一些大的改动,使整个框架更加方便人性化。
- Linux 命令神器:lsof 入门
ronin47
lsof
lsof是系统管理/安全的尤伯工具。我大多数时候用它来从系统获得与网络连接相关的信息,但那只是这个强大而又鲜为人知的应用的第一步。将这个工具称之为lsof真实名副其实,因为它是指“列出打开文件(lists openfiles)”。而有一点要切记,在Unix中一切(包括网络套接口)都是文件。
有趣的是,lsof也是有着最多
- java实现两个大数相加,可能存在溢出。
bylijinnan
java实现
import java.math.BigInteger;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
public class BigIntegerAddition {
/**
* 题目:java实现两个大数相加,可能存在溢出。
* 如123456789 + 987654321
- Kettle学习资料分享,附大神用Kettle的一套流程完成对整个数据库迁移方法
Kai_Ge
Kettle
Kettle学习资料分享
Kettle 3.2 使用说明书
目录
概述..........................................................................................................................................7
1.Kettle 资源库管
- [货币与金融]钢之炼金术士
comsci
金融
自古以来,都有一些人在从事炼金术的工作.........但是很少有成功的
那么随着人类在理论物理和工程物理上面取得的一些突破性进展......
炼金术这个古老
- Toast原来也可以多样化
dai_lm
androidtoast
Style 1: 默认
Toast def = Toast.makeText(this, "default", Toast.LENGTH_SHORT);
def.show();
Style 2: 顶部显示
Toast top = Toast.makeText(this, "top", Toast.LENGTH_SHORT);
t
- java数据计算的几种解决方法3
datamachine
javahadoopibatisr-languer
4、iBatis
简单敏捷因此强大的数据计算层。和Hibernate不同,它鼓励写SQL,所以学习成本最低。同时它用最小的代价实现了计算脚本和JAVA代码的解耦,只用20%的代价就实现了hibernate 80%的功能,没实现的20%是计算脚本和数据库的解耦。
复杂计算环境是它的弱项,比如:分布式计算、复杂计算、非数据
- 向网页中插入透明Flash的方法和技巧
dcj3sjt126com
htmlWebFlash
将
Flash 作品插入网页的时候,我们有时候会需要将它设为透明,有时候我们需要在Flash的背面插入一些漂亮的图片,搭配出漂亮的效果……下面我们介绍一些将Flash插入网页中的一些透明的设置技巧。
一、Swf透明、无坐标控制 首先教大家最简单的插入Flash的代码,透明,无坐标控制: 注意wmode="transparent"是控制Flash是否透明
- ios UICollectionView的使用
dcj3sjt126com
UICollectionView的使用有两种方法,一种是继承UICollectionViewController,这个Controller会自带一个UICollectionView;另外一种是作为一个视图放在普通的UIViewController里面。
个人更喜欢第二种。下面采用第二种方式简单介绍一下UICollectionView的使用。
1.UIViewController实现委托,代码如
- Eos平台java公共逻辑
蕃薯耀
Eos平台java公共逻辑Eos平台java公共逻辑
Eos平台java公共逻辑
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月1日 17:20:4
- SpringMVC4零配置--Web上下文配置【MvcConfig】
hanqunfeng
springmvc4
与SpringSecurity的配置类似,spring同样为我们提供了一个实现类WebMvcConfigurationSupport和一个注解@EnableWebMvc以帮助我们减少bean的声明。
applicationContext-MvcConfig.xml
<!-- 启用注解,并定义组件查找规则 ,mvc层只负责扫描@Controller -->
<
- 解决ie和其他浏览器poi下载excel文件名乱码
jackyrong
Excel
使用poi,做传统的excel导出,然后想在浏览器中,让用户选择另存为,保存用户下载的xls文件,这个时候,可能的是在ie下出现乱码(ie,9,10,11),但在firefox,chrome下没乱码,
因此必须综合判断,编写一个工具类:
/**
*
* @Title: pro
- 挥洒泪水的青春
lampcy
编程生活程序员
2015年2月28日,我辞职了,离开了相处一年的触控,转过身--挥洒掉泪水,毅然来到了兄弟连,背负着许多的不解、质疑——”你一个零基础、脑子又不聪明的人,还敢跨行业,选择Unity3D?“,”真是不自量力••••••“,”真是初生牛犊不怕虎•••••“,••••••我只是淡淡一笑,拎着行李----坐上了通向挥洒泪水的青春之地——兄弟连!
这就是我青春的分割线,不后悔,只会去用泪水浇灌——已经来到
- 稳增长之中国股市两点意见-----严控做空,建立涨跌停版停牌重组机制
nannan408
对于股市,我们国家的监管还是有点拼的,但始终拼不过飞流直下的恐慌,为什么呢?
笔者首先支持股市的监管。对于股市越管越荡的现象,笔者认为首先是做空力量超过了股市自身的升力,并且对于跌停停牌重组的快速反应还没建立好,上市公司对于股价下跌没有很好的利好支撑。
我们来看美国和香港是怎么应对股灾的。美国是靠禁止重要股票做空,在
- 动态设置iframe高度(iframe高度自适应)
Rainbow702
JavaScriptiframecontentDocument高度自适应局部刷新
如果需要对画面中的部分区域作局部刷新,大家可能都会想到使用ajax。
但有些情况下,须使用在页面中嵌入一个iframe来作局部刷新。
对于使用iframe的情况,发现有一个问题,就是iframe中的页面的高度可能会很高,但是外面页面并不会被iframe内部页面给撑开,如下面的结构:
<div id="content">
<div id=&quo
- 用Rapael做图表
tntxia
rap
function drawReport(paper,attr,data){
var width = attr.width;
var height = attr.height;
var max = 0;
&nbs
- HTML5 bootstrap2网页兼容(支持IE10以下)
xiaoluode
html5bootstrap
<!DOCTYPE html>
<html>
<head lang="zh-CN">
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">