向MapReduce转换:形成推荐

<strong><span style="font-size:18px;">/***
 * @author YangXin
 * @info 向MapReduce转换:形成推荐 ,处理来自向量的推荐结果。
 */
package unitSix;

import java.io.IOException;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Iterator;
import java.util.List;
import java.util.PriorityQueue;
import java.util.Queue;

import org.apache.hadoop.mapreduce.Reducer;
import org.apache.mahout.cf.taste.hadoop.RecommendedItemsWritable;
import org.apache.mahout.cf.taste.impl.recommender.ByValueRecommendedItemComparator;
import org.apache.mahout.cf.taste.impl.recommender.GenericRecommendedItem;
import org.apache.mahout.cf.taste.recommender.RecommendedItem;
import org.apache.mahout.math.VarLongWritable;
import org.apache.mahout.math.Vector;
import org.apache.mahout.math.VectorWritable;
import org.apache.mahout.math.map.OpenIntLongHashMap;

public class AggregateAndRecommendReducer extends Reducer<VarLongWritable, VectorWritable, VarLongWritable, RecommendedItemsWritable>{
	public void reduce(VarLongWritable key, Iterable<VectorWritable> values, Context context) throws IOException, InterruptedException{
		int recommendationsPerUser = 10;
	    OpenIntLongHashMap indexItemIDMap = null;
		Vector recommendationVector = null;
		for(VectorWritable vectorWritable : values){
			recommendationVector = recommendationVector == null ? vectorWritable.get() : recommendationVector.plus(vectorWritable.get());
		}
		Queue<RecommendedItem> topItems = new PriorityQueue<RecommendedItem>(recommendationsPerUser + 1, Collections.reverseOrder(ByValueRecommendedItemComparator.getInstance()));
		Iterator<Vector.Element> recommendationVectorIterator = recommendationVector.nonZeroes().iterator();
		while(recommendationVectorIterator.hasNext()){
				Vector.Element element = recommendationVectorIterator.next();
				int index = element.index();
				float value = (float)element.get();
				if(topItems.size() < recommendationsPerUser){
					
					topItems.add(new GenericRecommendedItem(indexItemIDMap.get(index), value));
				}else if(value > topItems.peek().getValue()){
					topItems.add(new GenericRecommendedItem(indexItemIDMap.get(index), value));
					topItems.poll();
				}
		}
		List<RecommendedItem> recommendations = new ArrayList<RecommendedItem>(topItems.size());
		recommendations.addAll(topItems);
		Collections.sort(recommendations, ByValueRecommendedItemComparator.getInstance());
		context.write(key, new RecommendedItemsWritable(recommendations));
	}
}
</span></strong>

你可能感兴趣的:(向MapReduce转换:形成推荐)