- DeepSeek 公开新的模型权重
数据分析能量站
机器学习人工智能
DeepSeek-V3是一款开源大语言模型,在关键基准测试中超越了Llama3.1405B和GPT-4o,尤其在编码和数学任务中成绩优异。除特定受限应用(军事、伤害未成年人、生成虚假信息等)外,模型权重开源,可在线下载。工作原理混合专家架构(MoE):DeepSeek-V3是MoE型Transformer模型,有6710亿个参数,运行时370亿参数激活。相比Llama3.1405B,训练时间大幅缩
- 深度探索 DeepSeek-R1:国产大模型的AGI雏形与创新进展
微凉的衣柜
科技头条agi人工智能
随着人工智能技术的飞速发展,国内外企业纷纷发布了一系列创新的大模型,推动了AGI(通用人工智能)领域的探索。近期,DeepSeek-R1这一模型的发布引起了广泛关注,它不仅标志着国产大模型在智能化上的一次重大突破,还提出了全新的训练方法,解决了过去依赖大量人类数据的问题。本篇文章将详细介绍DeepSeek-R1的核心优势、技术创新以及实际应用案例,揭示它在AGI领域的潜力。1.DeepSeek-R
- AI界的拼多多-中国人工智能初创公司DeepSeek如何与硅谷巨头竞争
xidianjiapei001
AI-人工智能与大模型人工智能AIDeepSeek大模型
这家公司打造出了一款成本更低且颇具竞争力的聊天机器人,其使用的高端计算机芯片数量少于谷歌和OpenAI等美国巨头企业,这凸显出芯片出口管制的局限性。圣诞节次日,一家名为DeepSeek的中国小型初创公司推出了一款新的人工智能系统,其性能可与OpenAI和谷歌等公司的尖端聊天机器人相媲美。仅此一点就堪称一个里程碑。但这个名为DeepSeek-V3系统的研发团队称,他们迈出了更大的一步。在一篇解释该技
- 6. 马科维茨资产组合模型+政策意图AI金融智能体(DeepSeek-V3)增强方案(理论+Python实战)
AI量金术师
金融资产组合模型进化论人工智能金融python机器学习算法大数据数学建模
目录0.承前1.幻方量化&DeepSeek1.1Whatis幻方量化1.2WhatisDeepSeek2.重写AI金融智能体函数3.汇总代码4.反思4.1不足之处4.2提升思路5.启后0.承前本篇博文是对上一篇文章,链接:5.马科维茨资产组合模型+政策意图AI金融智能体(Qwen-Max)增强方案(理论+Python实战)的AI金融智能体更改为幻方量化DeepSeek-V3的尝试。唯一区别之处在于
- 千万年薪招揽AI大牛!罗福莉加盟小米,将如何改变其大模型战略?
前端
近年来,人工智能(AI)领域发展迅速,其中大模型技术的突破更是引领着新一轮科技浪潮。AI代码生成器作为AI技术的重要应用,也正逐渐改变着软件开发的模式。1月18日,一则重磅消息震惊业界:DeepSeek开源大模型DeepSeek-V2的关键开发者之一罗福莉将加入小米,并可能领导小米大模型团队,年薪高达千万级别。这一举动不仅体现了小米对AI大模型技术的重视,也预示着小米在大模型领域的战略布局将迎来新
- 自学成才之路,DeepSeek R1 论文解读
智识世界Intelligence
神经网络深度学习自然语言处理课程设计学习方法
DeepSeekR1的论文看完后,后劲很大。虽然我推荐所有人都去阅读一下,但我估计实际去读的人应该很少。今天把论文里的三个亮点,用通俗易懂地方式写出来,希望能让更多人了解这篇论文有多么重要。亮点一:告别“刷题班”,纯“实战”也能练出推理大神!我们平时学习,是不是经常要“刷题”?做大量的练习题,才能巩固知识,提高解题能力。以前训练AI模型,也差不多是这个套路,要先给AI“喂”大量的“习题”(监督数据
- 【MotionCap】DROID-SLAM 1 :介绍及安装
等风来不如迎风去
AI入门与实战人工智能SLAHMRDROID-SLAM
DROID-SLAM:DROID-SLAM:DeepVisualSLAMforMonocularDROID-SLAM:适用于单目、立体和RGB-D相机的深度视觉SLAMStereo,andRGB-DCamerashttps://arxiv.org/abs/2108.10869DROID-SLAM:DeepVisualSLAMforMonocular,Stereo,andRGB-DCamerasfi
- DeepMind的新突破:GenCast
新加坡内哥谈技术
人工智能大数据语言模型
每周跟踪AI热点新闻动向和震撼发展想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行!订阅:https://rengongzhineng.io/如今,人工智能(AI)在天气预报领域的表现已经可以与传统计算方法媲美。然而,AI模型的训
- Element修改表格结构样式集合(后续实时更新)
白嫖叫上我
element-uivue.jselementui前端
场景修改前端Element组件el-table样式实现线表格-->-->执行-->轨迹轨迹-->.guiji-pop{height:100%;width:100%;.tablepro{width:100%;height:calc(100%-0.82rem);margin-top:0.16rem;::v-deep.el-table__body-wrapper{height:calc(100%-0.4
- SGLang安装教程,部署你的大模型,性能比vllm好,实现张量并行,数据并行,加快推理速度,亲测效果好。
张登杰踩
人工智能结对编程python
目前大模型部署工具主要是vllm,最近出现了SGLang,很多新开源大模型都支持SGLang的部署推理,例如deepseek-R1,Qwen2.5,Mistral,GLM-4,MiniCPM3,InternLM2,Llama3.2等。代码:GitHub-sgl-project/sglang:SGLangisafastservingframeworkforlargelanguagemodelsand
- deepin 下如何实现一个文件即可读写又可只读
deepin
在Linux系统的运维过程中,我们常常会遇到需要对文件或目录进行灵活权限管理的场景。例如,某个应用的存储目录空间不足,或者需要为开发人员提供只读访问权限,同时又不影响原有配置文件的写入权限。本文将介绍如何通过mount--bind和相关选项来实现这些需求。问题背景在实际工作中,我们可能会遇到以下场景:应用程序的存储目录空间不足,但无法直接扩容。需要为开发人员提供配置文件的只读权限,同时保留原有文件
- 深度求索DeepSeek V2.5-1210发布:强大的AI代码生成器,开启联网搜索新纪元
前端
深度求索团队近日发布了AI代码生成器DeepSeekV2.5系列的最终版本——DeepSeekV2.5-1210,并正式上线了备受期待的联网搜索功能。这标志着DeepSeekV2系列发展历程的一个重要里程碑,也为AI大模型在代码生成和信息检索领域树立了新的标杆。此次更新不仅带来了模型能力的全面提升,更重要的是开启了AI与实时信息互联的新篇章。DeepSeekV2.5-1210的核心改进:Post-
- deepin分享-Linux & Windows 双系统时间不一致解决方案
deepin
在双系统环境中(如Windows和Linux),时间同步问题是一个常见的困扰。Windows和Linux对系统时间的处理方式不同,这可能导致时间显示不一致。本文将介绍两种解决方法,帮助你解决Linux和Windows双系统时间不一致的问题。问题背景Windows操作系统直接将CMOS时间(硬件时钟)视为本地时间,不根据时区进行转换。每次调整系统时区或修改时间时,Windows会直接修改CMOS时间
- deepin-UEFI 引导:从入门到重装
deepin
在现代计算机中,UEFI(统一可扩展固件接口)已成为主流的启动方式,逐渐取代了传统的BIOS。UEFI提供了许多改进,如更灵活的启动管理、更大的分区支持以及更快的启动速度。然而,对于许多Linux用户来说,UEFI的复杂性可能会带来一些挑战,尤其是在多系统环境中。本文将详细介绍如何在Linux下使用UEFI引导系统,以及如何在出现问题时进行修复和重装。1.UEFI的基本原理UEFI是一种替代传统B
- 目标跟踪概念、多目标跟踪算法SORT和deep SORT原理
yhwang-hub
深度学习
目录目标跟踪、单目标跟踪、多目标跟踪的概念欧氏距离、马氏距离、余弦距离欧氏距离马氏距离余弦距离SORT算法原理SORT算法中的匈牙利匹配算法指派问题中的匈牙利算法预测模型(卡尔曼滤波器)数据关联(匈牙利匹配)目标丢失问题的处理SORT算法过程deepSORT算法原理状态估计轨迹处理分配问题的评价指标级联匹配深度表观描述子算法总结目标跟踪、单目标跟踪、多目标跟踪的概念目标跟踪分为静态背景下的目标跟踪
- DeepSpeed 常见问题解决方案
申晓容Lucille
DeepSpeed常见问题解决方案DeepSpeedDeepSpeedisadeeplearningoptimizationlibrarythatmakesdistributedtrainingandinferenceeasy,efficient,andeffective.项目地址:https://gitcode.com/gh_mirrors/de/DeepSpeed1.项目基础介绍和主要编程语言
- 几个导致DeepFaceLab训练速度较慢的原因
AlphaFinance
多媒体AI技术人工智能python机器学习
可能有几个原因导致DeepFaceLab训练速度较慢:复杂度:DeepFaceLab的算法和模型较为复杂,需要处理大量数据和计算复杂的数学运算,这可能导致训练速度较慢。硬件配置:DeepFaceLab需要较高的计算机配置才能运行,包括较大的内存、高性能的GPU、快速的存储器等。如果你的计算机配置不够高,可能会导致训练速度较慢。数据量:DeepFaceLab需要大量的训练数据来训练模型,如果你的数据
- Cursor 收费太贵?3分钟教你接入超低价 DeepSeek-V3,代码质量逼近 Claude 3.5
人工智能
DeepSeek-V3实在是太便宜了,就跟不要钱似的:每百万输入tokens0.1元(缓存命中)/1元(缓存未命中),每百万输出tokens2元跟其他模型相比,DeepSeek-V3的性价比非常高,只能用“真香”来形容。Sealos推出的AI聚合代理服务SealosAIProxy为用户提供了便捷的AI模型访问通道,其中就包含了DeepSeek-V3模型。而且通过SealosAIProxy使用这些模
- DeepSeek-V2
百态老人
学习
DeepSeek-V2是由幻方量化旗下的AI公司DeepSeek发布的第二代MoE(Mixture-of-Experts)大模型,具有显著的性能和成本优势。以下是关于DeepSeek-V2的详细分析:性能表现:DeepSeek-V2是一个参数量为2360亿的MoE模型,其性能接近GPT-4Turbo,并在多个基准测试中表现优异,如AlignBench、MT-Bench等,超越了GPT-4,与GPT
- error: libcublasLt.so.11: cannot open shared object file: No such file or directory/缺少libcublas.so查找
鼾声鼾语
linuxubuntu服务器pythoncan通讯方法
1,问题:gstnvtracker:Loadinglow-levellibat/opt/nvidia/deepstream/deepstream/lib/libnvds_nvmultiobjecttracker.sogstnvtracker:Failedtoopenlow-levellibat/opt/nvidia/deepstream/deepstream/lib/libnvds_nvmulti
- 增强大型语言模型(LLM)可访问性:深入探究在单块AMD GPU上通过QLoRA微调Llama 2的过程
109702008
人工智能#ROCm#python语言模型llama人工智能
EnhancingLLMAccessibility:ADeepDiveintoQLoRAThroughFine-tuningLlama2onasingleAMDGPU—ROCmBlogs基于之前的博客《使用LoRA微调Llama2》的内容,我们深入研究了一种称为量化低秩调整(QLoRA)的参数高效微调(PEFT)方法。本次重点是利用QLoRA技术在单块AMDGPU上,使用ROCm微调Llama-2
- 【深度学习基础】线性神经网络 | softmax回归的简洁实现
Francek Chen
PyTorch深度学习深度学习神经网络回归softmax人工智能
【作者主页】FrancekChen【专栏介绍】⌈⌈⌈PyTorch深度学习⌋⌋⌋深度学习(DL,DeepLearning)特指基于深层神经网络模型和方法的机器学习。它是在统计机器学习、人工神经网络等算法模型基础上,结合当代大数据和大算力的发展而发展出来的。深度学习最重要的技术特征是具有自动提取特征的能力。神经网络算法、算力和数据是开展深度学习的三要素。深度学习在计算机视觉、自然语言处理、多模态数据
- 深度求索DeepSeek V2.5-1210发布:AI代码生成器迎来全新升级
2401_89759264
人工智能前端
深度学习技术日新月异,而强大的AI代码生成器也随之不断进化。今天,我们将聚焦于深度求索团队发布的DeepSeekV2.5-1210版本,这款标志着DeepSeekV2系列收官之作,为我们带来了令人惊喜的Post-Training能力提升和备受期待的联网搜索功能。这篇文章将深入探讨DeepSeekV2.5-1210的各项改进,以及其开源带来的深远影响。DeepSeekV2系列的研发历程与V2.5-1
- DCGAN - 深度卷积生成对抗网络:基于卷积神经网络的GAN
池央
生成对抗网络cnn深度学习
深度卷积生成对抗网络(DCGAN,DeepConvolutionalGenerativeAdversarialNetwork)是生成对抗网络(GAN)的一种扩展,它通过使用卷积神经网络(CNN)来实现生成器和判别器的构建。与标准的GAN相比,DCGAN通过引入卷积层来改善图像生成质量,使得生成器能够生成更清晰、更高分辨率的图像。DCGAN提出了一种通过卷积结构来提高图像生成效果的策略,并在多个领域
- lxml.etree模式使用(一)
卫生纸不够用
python爬虫python前端javascript
fromlxmlimportetreefromcopyimportdeepcopydefprettyprint(element,**kwargs):print("/")xml=etree.tostring(element,pretty_print=True,**kwargs)print(xml.decode(),end='')#1.创建元素root=etree.Element("root")#2.
- 深度求索DeepSeek V2.5-1210发布:AI代码生成器迎来全新升级
前端
深度学习技术日新月异,而强大的AI代码生成器也随之不断进化。今天,我们将聚焦于深度求索团队发布的DeepSeekV2.5-1210版本,这款标志着DeepSeekV2系列收官之作,为我们带来了令人惊喜的Post-Training能力提升和备受期待的联网搜索功能。这篇文章将深入探讨DeepSeekV2.5-1210的各项改进,以及其开源带来的深远影响。DeepSeekV2系列的研发历程与V2.5-1
- deepin-grep详解:文本搜索的强大工具
deepin
在Linux系统中,grep命令是一个极其强大的文本搜索工具,广泛应用于文本处理、日志分析和数据筛选等场景。它的全称是“GlobalsearchREgularexpressionandPrintouttheline”,即全局搜索正则表达式并打印匹配的行。本文将详细介绍grep命令的基本用法、常用选项以及正则表达式的使用技巧。1.grep命令的基本功能grep命令的主要作用是从文本文件或管道数据流中
- deepin分享-Linux 磁盘分区和挂载指南
deepin
在Linux系统中(如deepin等),磁盘分区和挂载是系统管理的重要组成部分。了解如何进行分区、格式化和挂载操作,可以帮助你更好地管理磁盘空间,优化系统性能,并确保数据的安全存储。本文将详细介绍Linux磁盘分区和挂载的基本概念、操作步骤以及一些实用的命令。1.基本概念Linux系统采用了一种独特的文件系统结构,无论系统中有多少个分区,它们最终都归属于一个根目录(/),形成一个统一的文件系统。每
- DeepSeek:极致的中国技术理想
X_taiyang18
AI与机器学习人工智能
揭秘DeepSeek:一个更极致的中国技术理想主义故事划重点中国的大模型创业公司DeepSeek因其创新的MLA架构和DeepSeekMoESparse结构,使推理成本降低至每百万token仅1块钱,引发中国大模型价格战。与其他大公司烧钱补贴不同,DeepSeek是有利润的,背后是DeepSeek对模型架构的全面创新。DeepSeek创始人梁文锋认为,中国的大模型创业者除应用创新外,也可以加入到全
- vscode accelerate deepspeed配置
Ctrl_Cver
vscodeide编辑器
accelerate训练{//UseIntelliSensetolearnaboutpossibleattributes.//Hovertoviewdescriptionsofexistingattributes.//Formoreinformation,visit:https://go.microsoft.com/fwlink/?linkid=830387"version":"0.2.0","c
- 怎么样才能成为专业的程序员?
cocos2d-x小菜
编程PHP
如何要想成为一名专业的程序员?仅仅会写代码是不够的。从团队合作去解决问题到版本控制,你还得具备其他关键技能的工具包。当我们询问相关的专业开发人员,那些必备的关键技能都是什么的时候,下面是我们了解到的情况。
关于如何学习代码,各种声音很多,然后很多人就被误导为成为专业开发人员懂得一门编程语言就够了?!呵呵,就像其他工作一样,光会一个技能那是远远不够的。如果你想要成为
- java web开发 高并发处理
BreakingBad
javaWeb并发开发处理高
java处理高并发高负载类网站中数据库的设计方法(java教程,java处理大量数据,java高负载数据) 一:高并发高负载类网站关注点之数据库 没错,首先是数据库,这是大多数应用所面临的首个SPOF。尤其是Web2.0的应用,数据库的响应是首先要解决的。 一般来说MySQL是最常用的,可能最初是一个mysql主机,当数据增加到100万以上,那么,MySQL的效能急剧下降。常用的优化措施是M-S(
- mysql批量更新
ekian
mysql
mysql更新优化:
一版的更新的话都是采用update set的方式,但是如果需要批量更新的话,只能for循环的执行更新。或者采用executeBatch的方式,执行更新。无论哪种方式,性能都不见得多好。
三千多条的更新,需要3分多钟。
查询了批量更新的优化,有说replace into的方式,即:
replace into tableName(id,status) values
- 微软BI(3)
18289753290
微软BI SSIS
1)
Q:该列违反了完整性约束错误;已获得 OLE DB 记录。源:“Microsoft SQL Server Native Client 11.0” Hresult: 0x80004005 说明:“不能将值 NULL 插入列 'FZCHID',表 'JRB_EnterpriseCredit.dbo.QYFZCH';列不允许有 Null 值。INSERT 失败。”。
A:一般这类问题的存在是
- Java中的List
g21121
java
List是一个有序的 collection(也称为序列)。此接口的用户可以对列表中每个元素的插入位置进行精确地控制。用户可以根据元素的整数索引(在列表中的位置)访问元素,并搜索列表中的元素。
与 set 不同,列表通常允许重复
- 读书笔记
永夜-极光
读书笔记
1. K是一家加工厂,需要采购原材料,有A,B,C,D 4家供应商,其中A给出的价格最低,性价比最高,那么假如你是这家企业的采购经理,你会如何决策?
传统决策: A:100%订单 B,C,D:0%
&nbs
- centos 安装 Codeblocks
随便小屋
codeblocks
1.安装gcc,需要c和c++两部分,默认安装下,CentOS不安装编译器的,在终端输入以下命令即可yum install gccyum install gcc-c++
2.安装gtk2-devel,因为默认已经安装了正式产品需要的支持库,但是没有安装开发所需要的文档.yum install gtk2*
3. 安装wxGTK
yum search w
- 23种设计模式的形象比喻
aijuans
设计模式
1、ABSTRACT FACTORY—追MM少不了请吃饭了,麦当劳的鸡翅和肯德基的鸡翅都是MM爱吃的东西,虽然口味有所不同,但不管你带MM去麦当劳或肯德基,只管向服务员说“来四个鸡翅”就行了。麦当劳和肯德基就是生产鸡翅的Factory 工厂模式:客户类和工厂类分开。消费者任何时候需要某种产品,只需向工厂请求即可。消费者无须修改就可以接纳新产品。缺点是当产品修改时,工厂类也要做相应的修改。如:
- 开发管理 CheckLists
aoyouzi
开发管理 CheckLists
开发管理 CheckLists(23) -使项目组度过完整的生命周期
开发管理 CheckLists(22) -组织项目资源
开发管理 CheckLists(21) -控制项目的范围开发管理 CheckLists(20) -项目利益相关者责任开发管理 CheckLists(19) -选择合适的团队成员开发管理 CheckLists(18) -敏捷开发 Scrum Master 工作开发管理 C
- js实现切换
百合不是茶
JavaScript栏目切换
js主要功能之一就是实现页面的特效,窗体的切换可以减少页面的大小,被门户网站大量应用思路:
1,先将要显示的设置为display:bisible 否则设为none
2,设置栏目的id ,js获取栏目的id,如果id为Null就设置为显示
3,判断js获取的id名字;再设置是否显示
代码实现:
html代码:
<di
- 周鸿祎在360新员工入职培训上的讲话
bijian1013
感悟项目管理人生职场
这篇文章也是最近偶尔看到的,考虑到原博客发布者可能将其删除等原因,也更方便个人查找,特将原文拷贝再发布的。“学东西是为自己的,不要整天以混的姿态来跟公司博弈,就算是混,我觉得你要是能在混的时间里,收获一些别的有利于人生发展的东西,也是不错的,看你怎么把握了”,看了之后,对这句话记忆犹新。 &
- 前端Web开发的页面效果
Bill_chen
htmlWebMicrosoft
1.IE6下png图片的透明显示:
<img src="图片地址" border="0" style="Filter.Alpha(Opacity)=数值(100),style=数值(3)"/>
或在<head></head>间加一段JS代码让透明png图片正常显示。
2.<li>标
- 【JVM五】老年代垃圾回收:并发标记清理GC(CMS GC)
bit1129
垃圾回收
CMS概述
并发标记清理垃圾回收(Concurrent Mark and Sweep GC)算法的主要目标是在GC过程中,减少暂停用户线程的次数以及在不得不暂停用户线程的请夸功能,尽可能短的暂停用户线程的时间。这对于交互式应用,比如web应用来说,是非常重要的。
CMS垃圾回收针对新生代和老年代采用不同的策略。相比同吞吐量垃圾回收,它要复杂的多。吞吐量垃圾回收在执
- Struts2技术总结
白糖_
struts2
必备jar文件
早在struts2.0.*的时候,struts2的必备jar包需要如下几个:
commons-logging-*.jar Apache旗下commons项目的log日志包
freemarker-*.jar  
- Jquery easyui layout应用注意事项
bozch
jquery浏览器easyuilayout
在jquery easyui中提供了easyui-layout布局,他的布局比较局限,类似java中GUI的border布局。下面对其使用注意事项作简要介绍:
如果在现有的工程中前台界面均应用了jquery easyui,那么在布局的时候最好应用jquery eaysui的layout布局,否则在表单页面(编辑、查看、添加等等)在不同的浏览器会出
- java-拷贝特殊链表:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
bylijinnan
java
public class CopySpecialLinkedList {
/**
* 题目:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
拷贝pNext指针非常容易,所以题目的难点是如何拷贝pRand指针。
假设原来链表为A1 -> A2 ->... -> An,新拷贝
- color
Chen.H
JavaScripthtmlcss
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <HTML> <HEAD>&nbs
- [信息与战争]移动通讯与网络
comsci
网络
两个坚持:手机的电池必须可以取下来
光纤不能够入户,只能够到楼宇
建议大家找这本书看看:<&
- oracle flashback query(闪回查询)
daizj
oracleflashback queryflashback table
在Oracle 10g中,Flash back家族分为以下成员:
Flashback Database
Flashback Drop
Flashback Table
Flashback Query(分Flashback Query,Flashback Version Query,Flashback Transaction Query)
下面介绍一下Flashback Drop 和Flas
- zeus持久层DAO单元测试
deng520159
单元测试
zeus代码测试正紧张进行中,但由于工作比较忙,但速度比较慢.现在已经完成读写分离单元测试了,现在把几种情况单元测试的例子发出来,希望有人能进出意见,让它走下去.
本文是zeus的dao单元测试:
1.单元测试直接上代码
package com.dengliang.zeus.webdemo.test;
import org.junit.Test;
import o
- C语言学习三printf函数和scanf函数学习
dcj3sjt126com
cprintfscanflanguage
printf函数
/*
2013年3月10日20:42:32
地点:北京潘家园
功能:
目的:
测试%x %X %#x %#X的用法
*/
# include <stdio.h>
int main(void)
{
printf("哈哈!\n"); // \n表示换行
int i = 10;
printf
- 那你为什么小时候不好好读书?
dcj3sjt126com
life
dady, 我今天捡到了十块钱, 不过我还给那个人了
good girl! 那个人有没有和你讲thank you啊
没有啦....他拉我的耳朵我才把钱还给他的, 他哪里会和我讲thank you
爸爸, 如果地上有一张5块一张10块你拿哪一张呢....
当然是拿十块的咯...
爸爸你很笨的, 你不会两张都拿
爸爸为什么上个月那个人来跟你讨钱, 你告诉他没
- iptables开放端口
Fanyucai
linuxiptables端口
1,找到配置文件
vi /etc/sysconfig/iptables
2,添加端口开放,增加一行,开放18081端口
-A INPUT -m state --state NEW -m tcp -p tcp --dport 18081 -j ACCEPT
3,保存
ESC
:wq!
4,重启服务
service iptables
- Ehcache(05)——缓存的查询
234390216
排序ehcache统计query
缓存的查询
目录
1. 使Cache可查询
1.1 基于Xml配置
1.2 基于代码的配置
2 指定可搜索的属性
2.1 可查询属性类型
2.2 &
- 通过hashset找到数组中重复的元素
jackyrong
hashset
如何在hashset中快速找到重复的元素呢?方法很多,下面是其中一个办法:
int[] array = {1,1,2,3,4,5,6,7,8,8};
Set<Integer> set = new HashSet<Integer>();
for(int i = 0
- 使用ajax和window.history.pushState无刷新改变页面内容和地址栏URL
lanrikey
history
后退时关闭当前页面
<script type="text/javascript">
jQuery(document).ready(function ($) {
if (window.history && window.history.pushState) {
- 应用程序的通信成本
netkiller.github.com
虚拟机应用服务器陈景峰netkillerneo
应用程序的通信成本
什么是通信
一个程序中两个以上功能相互传递信号或数据叫做通信。
什么是成本
这是是指时间成本与空间成本。 时间就是传递数据所花费的时间。空间是指传递过程耗费容量大小。
都有哪些通信方式
全局变量
线程间通信
共享内存
共享文件
管道
Socket
硬件(串口,USB) 等等
全局变量
全局变量是成本最低通信方法,通过设置
- 一维数组与二维数组的声明与定义
恋洁e生
二维数组一维数组定义声明初始化
/** * */ package test20111005; /** * @author FlyingFire * @date:2011-11-18 上午04:33:36 * @author :代码整理 * @introduce :一维数组与二维数组的初始化 *summary: */ public c
- Spring Mybatis独立事务配置
toknowme
mybatis
在项目中有很多地方会使用到独立事务,下面以获取主键为例
(1)修改配置文件spring-mybatis.xml <!-- 开启事务支持 --> <tx:annotation-driven transaction-manager="transactionManager" /> &n
- 更新Anadroid SDK Tooks之后,Eclipse提示No update were found
xp9802
eclipse
使用Android SDK Manager 更新了Anadroid SDK Tooks 之后,
打开eclipse提示 This Android SDK requires Android Developer Toolkit version 23.0.0 or above, 点击Check for Updates
检测一会后提示 No update were found