经历了一年多的徘徊,最近终于下定决心好好学习图像处理。
第一篇就是参考学习了 这位博主的文章,非常精彩。 地址 http://blog.csdn.net/zouxy09/article/details/9622285
Vibe这个算法真是不错,快而简洁。
参考论文
M. VAN DROOGENBROECK, and O. PAQUOT. Background Subtraction : Experiments and Improvements for ViBe. In Change Detection Workshop(CDW), Providence, Rhode Island; 6 pages, June 2012.
O. Barnich and M. Van Droogenbroeck, ViBe: A powerful random technique to estimate the background in video sequences. In Proc. Int. Conf. Acoust., Speech Signal Process; Apr. 2009, pp. 945–948.
O. Barnich and M. Van Droogenbroeck, ViBe: A universal background subtraction algorithm for video sequences. In IEEE Transactions on Image Processing; 20(6):1709-1724, June 2011.
下面是对博客中代码的理解注释
vibe.h
#ifndef VIBE_H #define VIBE_H #include "opencv2/opencv.hpp" using namespace cv; using namespace std; #define NUM_SAMPLES 20 //每个像素点的样本个数 #define MIN_MATCHES 2 //#min指数 作为检测阈值 #define RADIUS 20 //Sqthere半径 与像素间的欧氏距离相比较 #define SUBSAMPLE_FACTOR 16 //子采样概率 有 1/UBSAMPLE_FACTOR 概率更新自己的样本值 #define background 0 //背景像素 #define foreground 255 //前景像素 class ViBe_BGS { public: ViBe_BGS(void); ~ViBe_BGS(void); void init(const Mat image); //初始化 分配空间 void processFirstFrame(const Mat image);//从第一帧中初始化模型 void testAndUpdate(const Mat _image); //测试新的帧并更新模型 Mat getMask(void){return m_mask;} //得到处理过的二值图像 private: Mat m_samples[NUM_SAMPLES]; //每个像素有NUM_SAMPLES个采样点 Mat m_foregroundMatchCount; //某个像素点连续N次被检测为前景,则认为一块静止区域被,将其更新为背景点。 Mat m_mask; //输出的二值图像 }; #endif
vide.cpp
#include "vibe.h" int c_xoff[9] = {-1, 0, 1, 1, 1, 0, -1, -1, 0}; //x的邻居点 int c_yoff[9] = {-1, -1, -1, 0, 1, 1, 1, 0, 0}; //y的邻居点 /* 9个邻域点 * * A B C * H I D * G F E * */ ViBe_BGS::ViBe_BGS(void) { } ViBe_BGS::~ViBe_BGS(void) { } /**************** Assign space and init ***************************/ /* 初始化Vibe算法各变量 */ void ViBe_BGS::init(const Mat _image) { for(int i = 0; i < NUM_SAMPLES; i++) { m_samples[i] = Mat::zeros(_image.size(), CV_8UC1);//刚开始都给0值初始化 } m_mask = Mat::zeros(_image.size(),CV_8UC1); m_foregroundMatchCount = Mat::zeros(_image.size(),CV_8UC1);//前景匹配图像 } /**************** Init model from first frame ********************/ void ViBe_BGS::processFirstFrame(const Mat _image)//处理第一帧图像 { RNG rng;//RNG:随机数生成器 int row, col; for(int i = 0; i < _image.rows; i++)//逐像素处理 { for(int j = 0; j < _image.cols; j++) { for(int k = 0 ; k < NUM_SAMPLES; k++)//取NUM_SAMPLES个采样点 { // Random pick up NUM_SAMPLES pixel in neighbourhood to construct the model int random = rng.uniform(0, 9);//产生一个0-9的数字 row = i + c_yoff[random]; //这里表示产生的随机数会在8领域范围内选择点作为采样点 if (row < 0) row = 0; if (row >= _image.rows) row = _image.rows - 1; col = j + c_xoff[random]; if (col < 0) col = 0; if (col >= _image.cols) col = _image.cols - 1; m_samples[k].at<uchar>(i, j) = _image.at<uchar>(row, col); } } } } /**************** Test a new frame and update model ********************/ void ViBe_BGS::testAndUpdate(const Mat _image) { RNG rng; for(int i = 0; i < _image.rows; i++) { for(int j = 0; j < _image.cols; j++) { int matches(0), count(0); float dist; while(matches < MIN_MATCHES && count < NUM_SAMPLES) //#min指数,最小交集 { dist = abs(m_samples[count].at<uchar>(i, j) - _image.at<uchar>(i, j));//这先计算里欧氏距离 if (dist < RADIUS) //如果在我们设定的采样半径之内,匹配计数+1 matches++; count++; } if (matches >= MIN_MATCHES)//#min 最小交集符合要求 { // It is a background pixel m_foregroundMatchCount.at<uchar>(i, j) = 0; //说明该点与周围点融合得比较好,可以作为背景处理 //某个像素点连续N次被检测为前景,则认为一块静止区域被误判为运动,将其更新为背景点。这里需及时清零. // Set background pixel to 0 m_mask.at<uchar>(i, j) = 0; //作为图像背景点 // 如果一个像素是背景点,那么它有 1 / defaultSubsamplingFactor 的概率去更新自己的模型样本值 int random = rng.uniform(0, SUBSAMPLE_FACTOR);// if (random == 0) // 1/SUBSAMPLE_FACTOR的概率去更新自己的样本。 { random = rng.uniform(0, NUM_SAMPLES); m_samples[random].at<uchar>(i, j) = _image.at<uchar>(i, j); } // 同时也有 1 / defaultSubsamplingFactor 的概率去更新它的邻居点的模型样本值 random = rng.uniform(0, SUBSAMPLE_FACTOR); if (random == 0) // 1/SUBSAMPLE_FACTOR的概率去更新8领域范围内的样本。 { int row, col; random = rng.uniform(0, 9); row = i + c_yoff[random]; if (row < 0) row = 0; if (row >= _image.rows) row = _image.rows - 1; random = rng.uniform(0, 9); col = j + c_xoff[random]; if (col < 0) col = 0; if (col >= _image.cols) col = _image.cols - 1; random = rng.uniform(0, NUM_SAMPLES); m_samples[random].at<uchar>(row, col) = _image.at<uchar>(i, j); } } else //距离太远,色差太大。当前景用。 { // It is a foreground pixel m_foregroundMatchCount.at<uchar>(i, j)++; // Set background pixel to 255 m_mask.at<uchar>(i, j) = 255; //如果某个像素点连续N次被检测为前景,则认为一块静止区域被误判为运动,将其更新为背景点 if (m_foregroundMatchCount.at<uchar>(i, j) > 50) { int random = rng.uniform(0, NUM_SAMPLES); if (random == 0) { random = rng.uniform(0, NUM_SAMPLES); m_samples[random].at<uchar>(i, j) = _image.at<uchar>(i, j); } } } } } }
#include "widget.h" #include <QApplication> #include "opencv2/opencv.hpp" #include "vibe.h" int main(int argc, char *argv[]) { Mat frame, gray, mask; VideoCapture capture; capture.open("campus.avi");//campus sequence if (!capture.isOpened()) { cout<<"No camera or video input!\n"<<endl; return -1; } ViBe_BGS Vibe_Bgs; int count = 0; while (1) { count++; capture >> frame; if (frame.empty())//直到帧结束 break; cvtColor(frame, gray, CV_RGB2GRAY);//色彩空间转换 if (count == 1)//处理第一帧 { Vibe_Bgs.init(gray); Vibe_Bgs.processFirstFrame(gray); cout<<" Training GMM complete!"<<endl; } else //正常更新 { Vibe_Bgs.testAndUpdate(gray); mask = Vibe_Bgs.getMask(); morphologyEx(mask, mask, MORPH_OPEN, Mat()); imshow("mask", mask); } imshow("input", frame); if ( cvWaitKey(20) == 'q' ) break; } return 0; }
每天进步一点。