Description
There is an interesting and simple one person game. Suppose there is a number axis under your feet. You are at point A at first and your aim is point B. There are 6 kinds of operations you can perform in one step. That is to go left or right by a,b and c, here c always equals toa+b.
You must arrive B as soon as possible. Please calculate the minimum number of steps.
Input
There are multiple test cases. The first line of input is an integer T(0 < T ≤ 1000) indicates the number of test cases. Then T test cases follow. Each test case is represented by a line containing four integers 4 integers A, B, a and b, separated by spaces. (-231 ≤ A, B < 231, 0 < a, b < 231)
Output
For each test case, output the minimum number of steps. If it's impossible to reach point B, output "-1" instead.
Sample Input
2 0 1 1 2 0 1 2 4
Sample Output
1 -1
题意:一维坐标轴,有A和B两个地方,现在从A到B,每次可以向任意方向走a、b或者c的距离,其中c=a+b,问能不能走到B,能的话最少走几次。
思路:c = a+b, C = A-B,则等价于求{|x|+|y| | ax+by=C || ax+cy=C || bx+cy=C}。对于ax+by=C,
用扩展欧几里得算法求得ax+by=gcd(a,b),是否有解可由C是否为gcd的倍数判断。
若有解,原方程的一组解为(x0, y0) = (xx*C/gcd, yy*C/gcd)。
令am=a/gcd,bm=b/gcd,则通解可表示为(x0+k*bm, y0-k*am)。
能使|x|+|y|最小的整点一定是最靠近直线与坐标轴交点的地方,
可以由|x|+|y|=C的图像不断平移看出。
由于负数取整时是先对它的绝对值取整,再添上负号,
所以考虑的范围要是[-x0/bm-1, -x0/bm+1] 、[y0/am-1, y0/am+1]。
转载请注明出处:http://blog.csdn.net/u010579068/article/details/45487153
#include<stdio.h> #include<math.h> #include<algorithm> #define LL long long using namespace std; LL ans; void exgcd(LL a,LL b,LL& d,LL& x,LL& y) { if(!b){d=a;x=1;y=0;} else { exgcd(b,a%b,d,y,x); y-=x*(a/b); } } LL China(LL a,LL b,LL c) { LL x,y,d,bm,am; exgcd(a,b,d,x,y); if(c%d) return -1; bm=b/d; am=a/d; x=x*c/d; y=y*c/d; // printf("x=%lld,y=%lld\n",x,y); LL sum=fabs(x)+fabs(y); for(int i=-x/bm-1;i<=-x/bm+1;i++) { LL X=x+bm*i; LL Y=y-am*i; if(i) { LL tmp=fabs(X)+fabs(Y); if(tmp<sum) sum=tmp; } } for(int i=y/am-1;i<=y/am+1;i++) { LL X=x+bm*i; LL Y=y-am*i; if(i) { LL tmp=fabs(X)+fabs(Y); if(tmp<sum) sum=tmp; } } return sum; } int main() { int T; LL A,B,C,a,b,c,d,x,y; scanf("%d",&T); while(T--) { scanf("%lld%lld%lld%lld",&A,&B,&a,&b); c=a+b; C=fabs(A-B); // ans==1<<30; LL t1=China(a,b,C); LL t2=China(a,c,C); LL t3=China(b,c,C); if(t1==-1&&t2==-1&&t3==-1) { printf("-1\n"); continue; } if(t1>t2) ans=t2; else ans=t1; if(ans>t3) ans=t3; printf("%lld\n",ans); } return 0; }