B:1414Geometry Problem
每两个点之间求距离,选最小的距离作为圆的直径,求出圆心和半径,最后半径加一个小小的数就可以了。
C:1415 Important Roads
对起点和终点分别求最短路,得到一定在最短路上的边(满足d[s][u]+w[u][v]+d[u][t]==d[s][t]的边),然后用双连通求桥的方法求边即可。
#include <cstdio> #include <cstring> #include <algorithm> #include <cmath> #include <queue> using namespace std ; typedef long long LL ; #define rep( i , a , b ) for ( int i = a ; i < b ; ++ i ) #define For( i , a , b ) for ( int i = a ; i <= b ; ++ i ) #define rev( i , a , b ) for ( int i = a ; i >= b ; -- i ) #define travel( e , H , u ) for ( Edge* e = H[u] ; e ; e = e -> next ) #define clr( a , x ) memset ( a , x , sizeof a ) #define cpy( a , x ) memcpy ( a , x , sizeof a ) const int MAXN = 20005 ; const int MAXE = 400005 ; const LL INF = 1e18 ; struct Edge { int v , c ; Edge* next ; } E[MAXE] , *H[MAXN] , *edge ; struct Seg { int u , v , c ; Seg () {} Seg ( int u , int v , int c ) : u ( u ) , v ( v ) , c ( c ) {} } seg[MAXE] ; struct Node { LL d ; int idx ; Node () {} Node ( LL d , int idx ) : d ( d ) , idx ( idx ) {} bool operator < ( const Node& a ) const { return d > a.d ; } } ; LL dis[2][MAXN] ; int vis[MAXN] , Time ; int Q[MAXN] , head , tail ; int n ; void clear () { edge = E ; clr ( H , 0 ) ; } void addedge ( int u , int v , int c ) { edge->v = v ; edge->c = c ; edge->next = H[u] ; H[u] = edge ++ ; } void dijkstra ( int s , LL d[] ) { For ( i , 1 , n ) d[i] = INF ; priority_queue < Node > q ; ++ Time ; d[s] = 0 ; q.push ( Node ( d[s] , s ) ) ; while ( !q.empty () ) { int u = q.top ().idx ; q.pop () ; if ( vis[u] == Time ) continue ; vis[u] = Time ; travel ( e , H , u ) { int v = e->v ; if ( d[v] > d[u] + e->c ) { d[v] = d[u] + e->c ; q.push ( Node ( d[v] , v ) ) ; } } } } struct BCC { Edge E[MAXE] , *H[MAXN] , *edge ; int dfn[MAXN] , low[MAXN] ; int dfs_clock ; int ans[MAXN] , top ; void clear () { edge = E ; dfs_clock = 0 ; clr ( H , 0 ) ; clr ( dfn , 0 ) ; clr ( low , 0 ) ; } void addedge ( int u , int v , int c ) { edge->v = v ; edge->c = c ; edge->next = H[u] ; H[u] = edge++ ; } void tarjan ( int u , int fa = 0 ) { dfn[u] = low[u] = ++ dfs_clock ; int flag = 1 ; travel ( e , H , u ) { int v = e->v ; if ( v == fa && flag ) { flag = 0 ; continue ; } if ( !dfn[v] ) { tarjan ( v , u ) ; low[u] = min ( low[u] , low[v] ) ; if ( low[v] > dfn[u] ) ans[top ++] = e->c ; } else low[u] = min ( low[u] , dfn[v] ) ; } } void find_bcc ( int n ) { top = 0 ; For ( i , 1 , n ) if ( !dfn[i] ) tarjan ( i ) ; printf ( "%d\n" , top ) ; sort ( ans , ans + top ) ; rep ( i , 0 , top ) printf ( "%d%c" , ans[i] , i < top - 1 ? ' ' : '\n' ) ; } } G ; int m ; void scanf ( int& x , char c = 0 ) { while ( ( c = getchar () ) < '0' || c > '9' ) ; x = c - '0' ; while ( ( c = getchar () ) >= '0' && c <= '9' ) x = x * 10 + c - '0' ; } void solve () { int u , v , c ; clear () ; G.clear () ; For ( i , 1 , m ) { scanf ( u ) , scanf ( v ) , scanf ( c ) ; addedge ( u , v , c ) ; addedge ( v , u , c ) ; seg[i] = Seg ( u , v , c ) ; } dijkstra ( 1 , dis[0] ) ; dijkstra ( n , dis[1] ) ; LL tot_dis = dis[0][n] ; For ( i , 1 , m ) { u = seg[i].u ; v = seg[i].v ; if ( dis[0][u] + seg[i].c + dis[1][v] == tot_dis || dis[0][v] + seg[i].c + dis[1][u] == tot_dis ) { G.addedge ( u , v , i ) ; G.addedge ( v , u , i ) ; } } G.find_bcc ( n ) ; } int main () { clr ( vis , 0 ) ; Time = 0 ; while ( ~scanf ( "%d%d" , &n , &m ) ) solve () ; return 0 ; }E: 1417 Numbers
对该数求所有比他大的小于等于n的开头为1的最小的数(这个数满足:10^i +(k -(10^i - 1)% k + 1))。
#include <cstdio> #include <cstring> #include <algorithm> #include <cmath> using namespace std ; typedef long long LL ; #define rep( i , a , b ) for ( int i = a ; i < b ; ++ i ) #define For( i , a , b ) for ( int i = a ; i <= b ; ++ i ) #define rev( i , a , b ) for ( int i = a ; i >= b ; -- i ) #define travel( e , H , u ) for ( Edge* e = H[u] ; e ; e = e -> next ) #define clr( a , x ) memset ( a , x , sizeof a ) #define cpy( a , x ) memcpy ( a , x , sizeof a ) const int MAXN = 65 ; const int MAXE = 10005 ; const int MAXH = 10005 ; LL n , k ; LL a[MAXN] ; struct String { char s[MAXN] ; } s[MAXN] ; int cnt = 0 ; LL pow ( int a , int b ) { LL res = 1 , tmp = a ; while ( b ) { if ( b & 1 ) res *= tmp ; tmp *= tmp ; b >>= 1 ; } return res ; } int cmp ( const String& a , const String& b ) { return strcmp ( a.s , b.s ) < 0 ; } void solve () { cnt = 0 ; a[cnt ++] = k ; For ( i , 1 , 18 ) { LL tmp = pow ( 10 , i ) ; if ( tmp > n ) break ; tmp = tmp + ( k - ( tmp - 1 ) % k - 1 ) ; if ( tmp <= k ) continue ; if ( tmp > n ) break ; a[cnt ++] = tmp ; } rep ( i , 0 , cnt ) sprintf ( s[i].s , "%lld" , a[i] ) ; sort ( s , s + cnt , cmp ) ; printf ( "%s\n" , s[0].s ) ; } int main () { while ( ~scanf ( "%lld%lld" , &n , &k ) && ( n || k ) ) solve () ; return 0 ; }
H:1420 High Speed Trains
设f(n)为n个城市时满足条件的方案数。则f(n)= 所有方案数 - 有一个点没有边覆盖的方案数 - 有两个点没有边覆盖的方案数 - …… - 全都点都没有被覆盖的方案数 = 2^(n*(n-1)/2) - C[n][1] * f(n-1) - C[n][2] * f(n-2) - …… - C[n][n] * f(0)。
C[i][j]表示从i个里面选j个的组合数。
边界条件为f(1)=0,f(0)=1。
JAVA打表AC。
I:问如何选择退出的时刻和买保险的时刻来使得期望获得的钱最多。
枚举结束的时间,每个时间里面枚举买保险的时间(可以不买),最后随便搞搞就行了。
有O(N)的做法,不过懒得搞了,懂了就行了。
#include <cstdio> #include <cstring> #include <algorithm> #include <cmath> #include <queue> using namespace std ; typedef long long LL ; #define rep( i , a , b ) for ( int i = a ; i < b ; ++ i ) #define For( i , a , b ) for ( int i = a ; i <= b ; ++ i ) #define rev( i , a , b ) for ( int i = a ; i >= b ; -- i ) #define travel( e , H , u ) for ( Edge* e = H[u] ; e ; e = e -> next ) #define clr( a , x ) memset ( a , x , sizeof a ) #define cpy( a , x ) memcpy ( a , x , sizeof a ) const int MAXN = 55 ; const double eps = 1e-8 ; double dp[MAXN][MAXN] ; double p[MAXN] ; double pp[MAXN] ; LL two[MAXN] ; int n , c ; int dcmp ( double x ) { return ( x > eps ) - ( x < -eps ) ; } void solve () { pp[0] = 1 ; two[0] = 1 ; double ans = 100 ; clr ( dp , 0 ) ; For ( i , 1 , n ) scanf ( "%lf" , &p[i] ) ; For ( i , 1 , n ) p[i] /= 100 ; For ( i , 1 , n ) pp[i] = pp[i - 1] * p[i] ; For ( i , 1 , n ) two[i] = two[i - 1] * 2 ; For ( i , 1 , n ) { For ( j , 1 , i ) { if ( 100 * two[j - 1] <= c ) continue ; double tmp = pp[j - 1] ; double tmp_p = 1 ; For ( k , j + 1 , i ) tmp_p *= p[k] * 2 ; tmp *= ( 100 * two[j - 1] - c ) * ( ( 1 - p[j] ) * tmp_p + p[j] * 2 * tmp_p ) ; ans = max ( ans , tmp ) ; } ans = max ( ans , 100 * two[i] * pp[i] ) ; } printf ( "%.10f\n" , ans ) ; } int main () { while ( ~scanf ( "%d%d" , &n , &c ) ) solve () ; return 0 ; }