Hopcroft-Karp算法
该算法由John.E.Hopcroft和Richard M.Karp于1973提出,故称Hopcroft-Karp算法。
原理
为了降低时间复杂度,可以在增广匹配集合M时,每次寻找多条增广路径。这样就可以进一步降低时间复杂度,可以证明,算法的时间复杂度可以到达O(n^0.5*m),虽然优化不了多少,但在实际应用时,效果还是很明显的。
基本算法
该算法主要是对匈牙利算法的优化,在寻找增广路径的时候同时寻找多条不相交的增广路径,形成极大增广路径集,然后对极大增广路径集进行增广。在寻找增广路径集的每个阶段,找到的增广路径集都具有相同的长度,且随着算法的进行,增广路径的长度不断的扩大。可以证明,最多增广n^0.5次就可以得到最大匹配。
算法流程
(1)从G=(X,Y;E)中取一个初始匹配。
(2)若X中的所有顶点都被M匹配,则表明M为一个完美匹配,返回;否则,以所有未匹配顶点为源点进行一次BFS,标记各个点到源点的距离。
(3)在满足dis[v] = dis[u] + 1的边集<v,u>中,从X中找到一个未被M匹配的顶点x0,记S = {x0},T = ¢。
(4)若N(S) = T,则表明当前已经无法得到更大匹配,返回;否则取一y0∈N(S) - 。
(5)若y0已经被M匹配则转步骤(6),否则做一条x0->y0的M-增广路径P(x0,y0),取M = M△P(x0,y0)。
(6)由于y已经被M匹配,所以M中存在一条边(y0,z0)去S = S∪ {z0},T = T∪{y0},转步骤(2)。
算法具体时间与分析
在寻找增广路径中可以对X中的每个未匹配的顶点进行BFS,BFS时对每个顶点维护一个距离编号dx[nx],dy[ny],如果某个Y中的节点为未匹配点,则找到一条增广路径。BFS结束后找到了增广路径集。然后利用DFS与匈牙利算法类似的方法对每条增广路进行增广,这样就可以找到最大匹配。
实现代码
以Hdu 2389 为例。
#include <iostream> #include <cstdlib> #include <cstdio> #include <cstring> #include <queue> #include <cmath> using namespace std; const int MAXN = 3010; const int MAXM = 3010*3010; const int INF = 0x3f3f3f3f; struct Edge { int v; int next; }edge[MAXM]; struct node { double x, y; double v; }a[MAXN], b[MAXN]; int nx, ny; int cnt; int t; int dis; int first[MAXN]; int xlink[MAXN], ylink[MAXN]; /*xlink[i]表示左集合顶点所匹配的右集合顶点序号,ylink[i]表示右集合i顶点匹配到的左集合顶点序号。*/ int dx[MAXN], dy[MAXN]; /*dx[i]表示左集合i顶点的距离编号,dy[i]表示右集合i顶点的距离编号*/ int vis[MAXN]; //寻找增广路的标记数组 void init() { cnt = 0; memset(first, -1, sizeof(first)); memset(xlink, -1, sizeof(xlink)); memset(ylink, -1, sizeof(ylink)); } void read_graph(int u, int v) { edge[cnt].v = v; edge[cnt].next = first[u], first[u] = cnt++; } int bfs() { queue<int> q; dis = INF; memset(dx, -1, sizeof(dx)); memset(dy, -1, sizeof(dy)); for(int i = 0; i < nx; i++) { if(xlink[i] == -1) { q.push(i); dx[i] = 0; } } while(!q.empty()) { int u = q.front(); q.pop(); if(dx[u] > dis) break; for(int e = first[u]; e != -1; e = edge[e].next) { int v = edge[e].v; if(dy[v] == -1) { dy[v] = dx[u] + 1; if(ylink[v] == -1) dis = dy[v]; else { dx[ylink[v]] = dy[v]+1; q.push(ylink[v]); } } } } return dis != INF; } int find(int u) { for(int e = first[u]; e != -1; e = edge[e].next) { int v = edge[e].v; if(!vis[v] && dy[v] == dx[u]+1) { vis[v] = 1; if(ylink[v] != -1 && dy[v] == dis) continue; if(ylink[v] == -1 || find(ylink[v])) { xlink[u] = v, ylink[v] = u; return 1; } } } return 0; } int MaxMatch() { int ans = 0; while(bfs()) { memset(vis, 0, sizeof(vis)); for(int i = 0; i < nx; i++) if(xlink[i] == -1) { ans += find(i); } } return ans; } double dist(const node a, const node b) { return sqrt((a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y)); } void read_case() { init(); int Time; scanf("%d", &Time); scanf("%d", &nx); for(int i = 0; i < nx; i++) { scanf("%lf%lf%lf", &a[i].x, &a[i].y, &a[i].v); } scanf("%d", &ny); for(int i = 0; i < ny; i++) { scanf("%lf%lf", &b[i].x, &b[i].y); } for(int i = 0; i < nx; i++) { for(int j = 0; j < ny; j++) { double limit = a[i].v*Time; double s = dist(a[i], b[j]); if(s <= limit) read_graph(i, j); } } } void solve() { read_case(); int ans = MaxMatch(); printf("%d\n\n", ans); } int main() { int T, times = 0; scanf("%d", &T); while(T--) { printf("Scenario #%d:\n", ++times); solve(); } return 0; }