在移动互联网时代,我们面对的是更多的客户端,更低的请求延迟,这当然需要对数据做大量的 Cache 以提高读写速度。
现有 Cache 系统的特点
目前业界使用得最多的 Cache 系统主要是 memcached 和 redis。 这两个 Cache 系统都有都有很大的用户群,可以说是比较成熟的解决方案,也是很多系统当然的选择。 不过,在使用 memcached 和 redis 过程中,还是碰到了不少的问题和局限:
我期待的理想 Cache 系统
支持异步持久化支持
经常在跟业界朋友交流时,会提到用 key 分段的方法来做容量扩展以及负载均衡。但是用静态的 key 分段会有不少问题:
最接近需求的系统:Couchbase
基于这些想法,我花了几天时间在 google, stack overflow, quora 上看了很多大家关于 cache cluster 的讨论,找到一个比较新系统 Couchbase。
Couchbase 的集群设计
对等网
Couchbase 群集所有点都是对等的,只是在创建群或者加入集群时需要指定一个主节点,一旦结点成功加入集群,所有的结点对等。
图片来源:couchbase.com
对等网的优点是,集群中的任何节点失效,集群对外提供服务完全不会中断,只是集群的容量受影响。
Smart Client
由于 couchbase 是对等网集群,所有的节点都可以同时对客户端提供服务,这就需要有方法把集群的节点信息暴露给客户端,couchbase 提供了一套机制,客户端可以获取所有节点的状态以及节点的变动,由客户端根据集群的当前状态计算 key 所在的位置。
vBucket
vBucket 概念的引入,是 couchbase 实现 auto sharding,在线动态增减节点的重要基础。
简单的解释 vBucket 可以从静态分片开始说起,静态分片的做法一般是用 key 算出一个 hash,得到对应的服务器,这个算法很简单,也容易理解。如以下代码所示:
servers = ['server1:11211', 'server2:11211', 'server3:11211']
server_for_key(key) = servers[hash(key) % servers.length]
但也有几个问题:
为了把 key 跟服务器解耦合,couchbase 引入了 vBucket。可以说 vBucket 代表一个 cache 子集,主要特点:
如以下代码所示:
servers = ['server1:11211', 'server2:11211', 'server3:11211']
vbuckets = [0, 0, 1, 1, 2, 2]
server_for_key(key) = servers[vbuckets[hash(key) % vbuckets.length]]
图片来源:http://dustin.sallings.org/2010/06/29/memcached-vbuckets.html
由于 vBucket 把 key 跟服务器的静态对应关系解耦合,基于 vBucket 可以实现一些非常强大有趣的功能,例如:
总结